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Abstract 

Rapidly increasing the amount of short-read data generated by NGSs (new-generation sequencers) calls for the devel-
opment of fast and accurate read alignment programs. The programs based on the hash table (BLAST) and Burrows-
Wheeler transform (bwa-mem) are used, and the latter is known to give superior performance. We here present 
a new algorithm, a hybrid of hash table and suffix tree, which we designed to speed up the alignment of short reads 
against large reference sequences such as the human genome. The total turnaround time for processing one human 
genome sample (read depth of 30) is just 31 min with our system while that was more than 25 h with bwa-mem/
gatk. The time for the aligner alone is 28 min for our system but around 2 h for bwa-mem. Our new algorithm 
is 4.4 times faster than bwa-mem while achieving similar accuracy. Variant calling and other downstream analyses 
after the alignment can be done with open-source tools such as SAMtools and Genome Analysis Toolkit (gatk) pack-
ages, as well as our own fast variant caller, which is well parallelized and much faster than gatk.
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1 Introduction
Present-day sequencers such as Illumina NextSeq and 
BGI T7 can produce a full read of the human genome 
of around 50 persons (read depth of 30) in one day. This 
data corresponds to around 10TBp (base pair). This enor-
mous amount of data requires a new level of computa-
tional power for read alignment and variant calling. The 
current “best practice” pipeline uses bwa-mem [7, 8] for 
alignment and gatk [11] for variant calling. The use of 

these  tools on usual CPU-based servers would require 
a large cluster system to handle the output of a single 
sequencer, resulting in a significant increase in the total 
cost which would compromise the advantage of modern 
sequencers. Thus, it is of critical importance to improve 
the performance of read alignment and variant calling 
either by improving the hardware, software, or both.

There are many works to improve the performance 
of human genome analysis, mostly by using faster 
processors. Here we discuss a few recent achieve-
ments. A proprietary implementation of these tools on 
a machine with four NVIDIA V100 GPUs realized a 
speed of 175  min for human genome data with a read 
depth of 50 with similar accuracies with gatk [5]. This 
speed corresponds to 1.2  TBp/day. Thus, we can con-
struct a system that has the performance of 10 TBp/day 
using 4 × 8 = 32 GPUs (or a somewhat smaller number 
with newer GPUs such as A100 or H100). Such a sys-
tem would still be pretty expensive and would consume 
a large amount of electricity. This implementation is 
not a simple porting of bwa-mem and gatk but a newly 
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developed code highly optimized to NVIDIA GPUs. 
Therefore, the results of their system are not exactly the 
same as those of the best practice pipeline. As a result, 
they gave detailed discussions on the accuracy of their 
system.

An implementation of bwa-mem and gatk on Super-
computer Fugaku with a Fujitsu A64fx processor has 
been reported by Suzuki et al. [12]. The achieved perfor-
mance is around 200Gbps/h, or 5TBp/day using 96 nodes 
of Supercomputer Fugaku. Thus, in principle, a 192-node 
A64fx system can process the data from one sequencer, 
but such a system is quite expensive and requires too 
much space and electricity. This implementation is a 
straightforward porting of bwa-mem and gatk to the 
A64fx processor of Supercomputer Fugaku with some 
modification of the source code to make use of the SVE 
SIMD instruction set of the A64fx processor. Thus, the 
calculation results are the same as those of the original 
bwa-mem/gatk combination, and there is no need for a 
detailed accuracy comparison. Since the gatk is not well 
parallelized, they have implemented a fairly complex 
scheduling algorithm in which multiple samples are pro-
cessed in one batch, so that they could improve the paral-
lel efficiency.

Illumina provides the hardware-based acceleration 
system, Dragen, which realizes a throughput of around 
10 TBp/day. This system apparently offers the best price-
performance ratio for human genome analysis. They offer 
both the software-only and hardware-accelerated ver-
sions of their systems.

In summary, it is certainly possible to construct com-
puter systems that can process data from a modern 
sequencer in real time, but such systems are very expen-
sive. To fully utilize the high performance of modern 
sequencers for the analysis of the human genome, it is 
necessary to significantly improve the performance of 
both the alignment and variant calling. The latter can 
be achieved by implementing the basic valiant calling 
algorithms in efficient parallel programs, while the for-
mer requires a fundamentally new algorithm if we are to 
achieve such improvement over existing best-performing 
software.

We describe such a new algorithm, the hybrid hash-
tree algorithm. In this paper, we describe this new algo-
rithm and compare its performance and accuracy with 
those of bwa-mem/gatk combination. The new algorithm 
achieved much better performance while retaining the 
accuracy comparable to that of bwa-mem/gatk.

2  Methods
2.1  Hash‑based algorithm
The hybrid hash-tree algorithm is based on the origi-
nal hash-based algorithm such as used in BLAST [1, 3]. 

A hash key is a fixed-length sequence of bases. With the 
hash-based algorithm, for each of all possible hash keys of 
a given length l , the locations in the reference sequence 
that match that key are recorded. For a read, we first use 
its first l base as a key. We store the locations of this key in 
the reference. Then, we shift the starting position within 
the read by a stride of s (typically s = 5 ), and store the 
locations of the new key. We repeat this procedure until 
we reach the end of the read.

Then we sort all candidate locations and search for the 
locations at which several different positions in the read 
match to the reference sequence. For example, if the read 
is a perfect copy of one sub-sequence of the reference 
sequence and if this sub-sequence appears in no other 
location, each hash of the read would appear in the cor-
responding location of the reference sub-sequence and 
there is no other place in the reference genome where all 
hashes of the read appear the corresponding location of 
the sub-sequence. Thus, we can determine the location of 
the sequence.

Let us consider the reference sequence of AGT CAC 
CAG AGA TGGC with length 16 as an example. With 
l = 2 , we have 15 possible starting locations of keys. If we 
encode ACGT as 0, 1, 2, 3, the locations and keys are as 
shown in Fig. 1.

Therefore, the hash table should express the data struc-
ture shown in Fig. 2. If the key is, for example, 0, it should 
return NULL, since there is no sequence AA in the 
reference.

If we have sequence AGAGA as a read, for the first AG 
(at position 0, when we count positions from the left and 
starting with zero), we find candidate locations 0, 7, and 
9 as shown in Fig. 2. Here, we shift starting position by 
one and the key becomes GA, and get 8, 10. Since these 

Fig. 1 Hash key values for 15 locations of reference sequence 
AGT CAC CAG AGA TGGC. First, second and third columns show 
the location, key value, and original string
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locations correspond to position 1 in the read, to obtain 
locations which correspond to position 0 we should sub-
tract one from these values to obtain 7, 9. For AG at posi-
tion 2, we have 0, 7, 9 (and thus 5, 7 for the first position 
of the read), and 8, 10 for GA at position 3 in the read 
(and thus 5, 7 for the first position of the read). In this 
case, each key gives multiple values for the first position 
of the read, but position 7 appears for all four keys and it 
is the only value shared by all keys. Therefore, we know 
that AGAGA matches with the reference location 7 and 
the match is perfect (Appendix 1).

If there are SNPs in a read, the hash table gives different 
results for starting positions that cover the locations of 
SNPs. If there are inserts/deletions, the hash table gives 
different (but near) locations for starting positions before 
inserts/deletions and positions after. Thus, we can get 
some information on mutations.

This algorithm is quite robust, but the calculation 
cost per read can become very large. If we make, for 
example, hash keys of 15 bases, the number of possible 
values of keys is  415 ≃   109, and the average number of 
locations per key is around three since the length of the 
human genome sequence is around 3 ×   109. However, 
some keys appear in a very large number of locations, 
and that means such keys also appear in many reads. 
These frequently appearing keys cause a huge increase 
in the total calculation cost.

For example, if there is one hash key which appears 
in 104 places in the reference sequence, the probabil-
ity that one read picks one of these 104 locations is 
m× 10

4/3× 10
9
= m/3× 10

5 , where m is the length 
of reads. Thus, if one read has the length of m = 150 , 
around one in 2000 reads picks up this pattern, and 
its calculation cost can be  104 times higher than that 

of other reads. Of course, if there is only one such key, 
we could just ignore it. In practice, however, there is 
a spectrum of keys appearing in different numbers of 
locations. It is difficult to reduce the total calculation 
cost using the hash-based algorithm.

2.2  The suffix tree
In principle, if we could use much longer keys, we should 
be able to avoid this problem of too many matched loca-
tions. However, it is impractical to use the hash length 
longer than 15, since the amount of memory needed 
increases exponentially.

One solution for this problem is to use the suffix tree 
[13]. The suffix tree is a tree structure corresponding 
to the suffix array, and the suffix array is the alphabeti-
cally sorted array of all suffixes of the reference sequence. 
Thus, the suffix array is essentially the array of hash keys 
with a length the same as that of the reference sequence 
itself. We can regard the suffix tree as a convenient way 
to implement very long hash keys.

There are many different ways to make the data struc-
ture equivalent to the suffix tree [4]. Here we present a 
conceptually simple one for illustration purposes, which 
is not necessarily practical for actual reference sequence. 
From the reference sequence of AGT CAC CAG AGA 
TGGC, we first make an array of sequences. The first 
element of the array is the reference itself, and the sec-
ond element is the same reference but with the first base 
removed. For kth element, we remove the first k − 1 
bases, and thus we have n elements, where n is the length 
of the sequence Fig. 3.

Then we sort this array using the dictionary order to 
obtain the suffix array. The result is shown in Fig. 4a.

We can now construct a tree structure corresponding 
to the suffix array as shown in Fig.  4b. For one starting 
location of the read, we can go down the suffix tree to 
find the location(s) with the longest match. As a result, 
the number of match locations is dramatically reduced.

Though conceptually simple, the suffix tree has not 
been widely used for read alignment. One reason is that 
it requires a large amount of memory. The data size of the 
reference human genome sequence is around 1GB. The 
suffix array would need 12 GB or 24 GB (depending on 
whether one uses a 32-bit or 64-bit integer), and the suf-
fix tree can easily consume more than 100  GB. Fifteen 
years ago, when the early versions of widely used genom-
ics programs such as bwa-mem and gatk were designed 
and developed, the DRAM memory of more than 100 GB 
was very expensive. Moreover, machines that could 
house a large amount of memory were also very expen-
sive since they had to have a large number of memory 
slots and thus must use expensive high-end server CPUs 
and very expensive motherboards.

Fig. 2 Locations pointed by hash keys in the reference sequence 
of AGT CAC CAG AGA TGGC. “NULL” means there is no location 
for that key
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At that time, it was clearly unpractical to use the suffix 
tree, since there is an alternative data structure, Burrows-
Wheeler Transform (BWT), which is extremely memory 
efficient. Thus, bwa-mem [7–9], which is currently the 
golden standard read aligner, adopted BWT as its basic 
algorithm and that was where its name, bwa-mem, came 
from (Burrows-Wheeler Alignment Tool, Maximal Exact 
Matches). To make use of computers with a small amount 
of memory then available, it was essential to use a mem-
ory-efficient data structure and the choice to use BWT 
made perfect sense.

As of 2023, desktop PC motherboards with just four 
memory slots can house 128GB of memory for less than 
1000 USD. Thus, it might be time to rethink what is the 
best algorithm for the read alignment. We use the suffix 
tree itself instead of BWT.

The advantage of the suffix tree is that the algorithm 
is much simpler compared to the suffix array and BWT, 
and thus requires a smaller number of the main memory 
access. To extend the match by one base, the suffix tree 
algorithm needs to access just one tree node, which is 
usually a single instance of a class. In contrast, the suf-
fix array and BWT require accesses to two locations in 
the suffix array and two more accesses to supporting data 
structures. Even though the calculation cost itself is not 
much different, the number of main memory accesses is 
much smaller for the suffix tree, since the data from one 
tree node usually fits in the one cache line, while sev-
eral accesses required by BWT result in the accesses to 

multiple cache lines. Thus, the extension of the match 
with the suffix tree is much faster compared to that with 
BWT, on modern computers with the hierarchical cache 
structure.

2.3  The hybrid hash‑tree algorithm
Even though the suffix tree is quite efficient, it is possi-
ble to further improve its efficiency by the following two 
modifications. The first one is to combine the tree search 
with the hash key search. We can replace the first l levels 
of the suffix tree with the hash key of the same length, 
and thus eliminate the first l − 1 memory access. As we 
have stated above, l = 15 is practical with modern com-
puter systems. This modification improves the search 
speed significantly since, for most cases, the initial hash 
key search reduces the candidate locations to just a few 
by single memory access, instead of following the tree 
structure 15 times. Figure 5 shows the hybrid data struc-
ture in the case of l = 2.

Another way to improve the efficiency of the suffix tree 
algorithm is to collapse multiple levels of a tree into a 
single level. For example, we can replace a two-level tree 
with four children at each level with a one-level tree with 
16 children. Using this transformation, we can extend the 
match by two bases in one iteration, in other words, in 
one memory access, as far as the single node data fits into 
one cache line (typically 64  bytes). A tree node with 16 
children can fit into 64-byte cache line, while that with 64 
children does not. Therefore, instead of a suffix tree with 
each node corresponding to one base, we use a collapsed 
tree, with each node corresponding to two bases. This 
transformation is easy for the suffix tree, but not easy and 
might be impossible for the suffix array with BWT.

2.4  Search strategy
With the hash-based algorithm, such as used in BLAST, 
we obtain the location candidates for keys of length l in 
the read of length m with a stride of s. Thus, there are 
(m− l − s + 2)/s such keys. With our hybrid algorithm, 
we could use this same strategy, but it is obviously not 
ideal. When we find a rather long match, with the next 
starting position shifted by a stride of five or so we will 
certainly find a similarly long match. Also, for the major-
ity of reads the match is either exact or containing just 
one SNP. Thus, the calculation cost of the hybrid algo-
rithm can be O(m2) . This is certainly not ideal.

We can avoid this problem by simply shifting the next 
starting point by the amount comparable to the match 
length itself. For example, if we shift the starting position 
by p/2 , where p is the current match length, the total cost 
of matching calculation is reduced to O(m) . On the other 
hand, with this strategy, we can miss the longest match, 

Fig. 3 The suffix array before sort for the reference sequence of AGT 
CAC CAG AGA TGGC 
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since the true longest match could start at the positions 
in the read we skipped.

A simple solution to this problem is to keep candi-
date locations with match lengths more than half of the 
apparent maximum match for the score calculation in the 
next stage. A longer match, if exists, starts somewhere 
between the current starting position and the next start-
ing position. In the worst case, where the actual match is 
the shortest and appears at the leftmost position, it starts 
at the position next to the current starting position and 
extends by two bases after the end position of the cur-
rent search. Therefore, if we start at the position shifted 
by p/2 from the current starting position, we can find the 
latter half of the longest match with length (p+ 2)/2.

For the search for chimeric alignments, our strategy 
can be problematic since the candidate regions for a chi-
meric alignment can be very similar and yet contain, for 
example, multiple SNPs. Actually, in this case, the longest 
exact match might not give the best matching location 
either, since the best match location might contain mul-
tiple SNPs and the length of the longest exact match loca-
tion can be short. In such cases, it is necessary to make 
the shift length small so that we can find all short-match 
locations.

2.5  Extension and scoring
For the extension of the match, we use the usual Smith-
Waterman-Gotoh (SWG) algorithm [6], and we take into 
account the Base Quality Score Recalibration procedure 
[2] when assigning the final scores to the matches. In our 
implementation, the actual code for the SWG algorithm 

uses the AVX2 SIMD instruction set, so that we can take 
advantage of recent processors from both Intel and AMD.

2.6  Parallelization strategy
To make efficient use of modern CPUs, it is essential to 
make all steps of genome analysis well parallelized for 
a large number of cores, even when we just use a single 
desk-side workstation. This is because modern high-end 
processors have a large number of cores integrated into 
one package. For example, AMD EPYC 9000 series pro-
cessors, announced in November 2022, have up to 96 
cores in one package, and high-end servers can house 
two processor packages in one chassis, resulting in 192 
cores in one computing node. It is, however, not easy 
to design a program whose performance scales well for 
more than 100 cores. Of course, large supercomputers 
have 1 million or more cores, and at least a few programs 
can make use of those huge numbers of cores. However, 
that is usually for extremely large-scale problems.

From the point of view of parallel processing, one 
advantage of human whole genome analysis is that there 
are lots of potential parallelism in all stages of processing. 
First of all, the alignment of a read can be done indepen-
dently of those of all other reads. If we use the current 

Fig. 4 The suffix array (a) and the corresponding suffix tree (b) for the reference sequence of AGT CAC CAG AGA TGGC. Here “X” in the tree means 
the end of the sequence

Fig. 5 The hybrid hash-tree tree for reference sequence of AGT CAC 
CAG AGA TGGC 
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typical value of the read length of 150, a (pair of ) fasta 
files for the read depth of 30 contains 100  G bases or 
around 300  M read pairs, and all of these 300  M read 
pairs can be processed in parallel.

There is, however, one practical issue. At least in the case 
of sample data, fasta files are usually provided as single big 
text files compressed with gzip. This means that it should 
be decompressed, and because gzip-compressed file can 
only be decompressed sequentially, this decompression can 
take time longer than the rest of the analysis. The actual 
sequencer should be able to generate many small fasta files 
for the data of one human genome since the actual read-
ing process is highly parallel. In this paper, we assume that 
the input data are available as a number of small fasta files, 
where the total number of the fasta files is q.

Our new hybrid hash-tree algorithm requires a fairly 
large (around 100  GB) table to express the reference 
genome. Therefore, this table must be shared by pro-
cesses that handle the reads in parallel. We therefore 
implemented the parallelization using OpenMP. In our 
implementation, one OpenMP-parallelized loop pro-
cesses the small fasta files, one pair of files in one itera-
tion. With OpenMP, we can specify how many threads 
are run in parallel at runtime. Since different threads pro-
cess different files, there is very low parallelization over-
head. Also, we carefully avoided any overhead caused by 
library calls and memory allocation/deallocation/gar-
bage collection. Thus, as we will see in Section 3, we have 
achieved a very good parallel speedup. We are impressed 
by the fact that the Linux operating system can handle 
huge numbers of I/O requests quite well. This part of the 
program outputs candidates of matches for each read.

The SWG program, which performs the match through 
the Smith-Waterman-Gotoh algorithm and calculates 
the matching score, does not require large tables. There-
fore, we implement this part as a single-thread program, 
which processes one file and generates SAM-format out-
put. For parallel processing, we just run a fixed number 
of this program in parallel.

The output of the SWG program is then processed 
by the program for variant calling. The parallelism also 
exists for variant calling, although it is not of the level 
of reads, but of the level of the locations in the reference 
genome. Conceptually, what we do for variant calling is, 
for each base location in the reference genome, to see if 
the bases of reads aligned at its location contain SNP or 
other mutations. To do this, we need to be able to find 
all reads that cover the location we are looking at, and 
this is most easily done by sorting reads according to the 
aligned locations.

Usually sorting of reads is done using samtools. Here, 
again, the processing time of samtools sort can be longer 

than the rest of the processing, and it is important to 
speed up the sorting process. We have implemented par-
allel off-the-core bucket sort. We divide the reference 
locations into r regions ( r ∼ 1000 or more). The SWG 
program creates r output files and writes each SAM 
record to the file with the appropriate region. Since there 
are q small fasta files, we will have pq small SAM files. If 
we call one SAM file generated from fasta file i for refer-
ence region j as Sij , we can obtain all SAM records for 
region j by combining all Sij for 0 ≤ i < q − 1 . The vari-
ant caller reads these files and sorts SAM record on the 
memory.

2.7  Variant calling
As we stated in the previous subsection, our variant caller 
accepts the SAM records in a specified range of the refer-
ence sequence and performs sorting. Then it performs 
so-called MarkDuplicates, and checks if there is SNP or 
INDEL for each location in the reference region.

2.8  Hardware and software platform
For all test calculations in this paper, we used a Linux 
server with AMD ThreadRipper 3990X 64-core proces-
sor, 256  GB of DDR4 main memory, and 4TB of PCIe 
gen3 M.2. SSDs.

The operating system is Ubuntu 20.4 LTS. We used 
gcc version 9.4.0 (Ubuntu 9.4.0-1ubuntu1 20.04.1) which 
comes with the operating system.

3  Results
3.1  Benchmark problem
As the benchmark problem, we used the data provided 
for PrecisionFDA Truth Challenge V2 [10]. We follow the 
challenge contest procedure and show the accuracy and 
timing results. In Appendix  2, we show the command 
parameters used for bwa-mem/gatk processing. We use 
bwa-mem/gatk for comparison since it is the current 
“golden standard” for genome analysis.

3.2  Accuracy
Table 1 gives the accuracy result, as was required in the 
PrecisionFDA Truth Challenge V2 contest. For each of 
the three sample data, HG002, HG003, and HG004, we 
present the result with bwa-mem/gatk, as well as two 
results with our system. One is with the high-accuracy 
mode, and the other with the low-accuracy, fast mode. 
As in the case of the original Truth Challenge V2 contest, 
some of the adjustable parameters for our system were 
tuned to give the best result for HG002, and the same 
set of parameters is used for HG003 and HG004. We can 
see that the final F-measure values of our high-accuracy 
results are slightly better than those of bwa-mem/gatk, 
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while those of low-accuracy results are slightly worse. 
The difference is, in all cases, quite small, and we can 
safely conclude that our system has achieved the accu-
racy of the same level as that of bwa-mem/gatk.

Table 2 shows the accuracy for SNPs and INDELs (non-
SNPs), for the case of the HG002 sample. Our result is 
slightly better than that of bwa-mem/gatk for SNPs and 
slightly worse for INDELs. Again, the difference is very 
small.

Compared to other results presented in Olson et  al. 
[10], our results (and that of bwa-mem/gatk) are of 
course not quite the best, even within non-deep-learning 
results, but are close to the average of them, since the 
results for Illumina data range from 97 to 99.7%.

3.3  Timing
Tables 3 and 4 show the elapsed time to process HG002 
sample using our system and bwa-mem/gatk, respectively. 
In both cases, the time for each command and the total 
time are shown. For our system, times for both the high-
accuracy and low-accuracy modes are shown. When we 
compare the total time, our low-accuracy mode is 49.5 
times faster than bwa-mem/gatk, while our high-accuracy 
mode is 26.4 times faster. As we have stated earlier. bwa-
mem uses less than 10% of the total time. If we compare 
the time for bwa-mem alone and that for our aas-match 
part, which does roughly what bwa-mem does, our low-
accuracy mode is 4.4 times faster, and high-accuracy 
mode is 2.2 times faster than bwa-mem, respectively.

Table 1 Accuracy test results

(a) HG002
True positives True calls False-pos False-neg Precision Sensitivity F-measure

Gatk 3854404 3855258 54542 37091 0.9860 0.9905 0.9883

High 3843485 3845450 38814 48010 0.9900 0.9877 0.9888

Low 3840691 3841762 44070 50804 0.9887 0.9869 0.9878

(b) HG003
True positives True calls False-pos False-neg Precision Sensitivity F-measure

Gatk 3795148 3795094 53773 36846 0.9860 0.9904 0.9882

High 3785845 3786914 36724 46149 0.9904 0.9880 0.9892

Low 3783096 3783268 41959 48898 0.9890 0.9872 0.881

(c) HG004
True positives True calls False-pos False-neg Precision Sensitivity F-measure

Gatk 3819599 3819528 54716 37529 0.9859 0.9903 0.9881

High 3808201 3809240 39099 48927 0.9898 0.9873 0.9886

Low 3805555 3805753 43751 51573 0.9886 0.9866 0.9876

Table 2 HG002 SNP/INDEL result

true positives false positives true positives calls false negatives precision sensitivity f‑measure

Gatk SNP 3336055 45856 3337490 28373 0.9864 0.9916 0.9890

Gatk INDEL 518349 8686 517768 8718 0.9835 0.9835 0.9835

High SNP 3325657 29106 3329961 38771 0.9913 0.9885 0.9899

High INDEL 517828 9708 515489 9239 0.9815 0.9825 0.9820

Table 3 Time in minutes to process HG002 sample using our 
system

High accuracy Low accuracy

ass-match 55.82 28.32

ass-vcall 2.68 2.92

Total 58.50 31.23

Table 4 Time in minutes to process HG002 sample using bwa-
mem/gatk

bwa-mem 124.40

MarkDuplicates 135.75

BaseRecalibrator 203.67

PrintReads 716.67

HaplotypeCaller 363.83

Total 1544.32
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For the procedures after bwa-mem, with our system 
everything is done in a single command, aas-vcall, in less 
than 3 min. It effectively does the sorting of SAM records, 
MarkDuplicates, BaseRecalibration, and variant calling. 
Compared to gatk tools which take around 24 h in total, 
our system is around 500 times faster. If we compare the 
time for HaplotypeCaller only, our system is still 120 times 
faster. This difference is not due to any new algorithm, but 
primarily because everything is written in C language in 
such a way that there is no serious parallelization overhead.

Table  5 shows the throughput of systems in terms of 
TBp/day, for the present work, NVIDIA V100 [5] and 
Fujitsu A64fx [12]. We can see that our system is by far 
more cost-effective compared to systems reported in 
recent works. With our software, a single-processor 
workstation achieves a throughput comparable to (but 
faster than) those of 16 NVIDIA V100 GPGPUs or 96 
Fujitsu A64fx processors.

3.4  Parallel efficiency
Figure 6 shows the time to process HG002 sample data as 
the function of the number of threads used. The dashed 

line indicates the ideal parallel speedup. We can see that 
processing speed is almost proportional to the number of 
threads, for up to 64 threads. For more than 64 threads, 
the gain is small since we used 64 cores.

The main reason why the speedup is somewhat less 
than ideal for a large number of cores is because of the 
limitation of the clock frequency. On AMD ThreadRip-
per 3990X processor, when only a small number of cores 
are active, their clock frequency can reach 4.3  GHz. 
However, when a large number of cores are used, the 
clock frequency goes down due to the limit in the power 
consumption. We found that the clock frequency was 
3.9  GHz for 32 threads and 3.3  GHz for 64 and 126 
threads. This reduced clock frequency explains why the 
parallel speedup is not ideal.

4  Discussions
In this paper, we present the algorithm, implementation, 
and performance of our fast aligner for short reads. Our 
system is two to four times faster than bwa-mem on the 
same computer system. The accuracy achieved for data-
sets used in Precision FDA Truth Challenge V2 is very 
close to that of bwa-mem/gatk for our low-accuracy 
mode (F-measure difference of 0.01–0.05%), and slightly 
more accurate for our high-accuracy mode.

We also developed a new implementation of the vari-
ant caller, which is used to obtain the above result. It 
can process Truth Challenge V2 samples in less than 
3 min on a 64-core AMD ThreadRipper processor. Our 
variant caller is more than 100 times faster than gatk 
Haplotype-Caller.

Right now, our system has been tested only for ger-
mline mutations and is not well-tested for somatic 
mutations or structural variants. We are currently 
working on the efficient detection of structural vari-
ants. Here, bwa-mem does consume a significant frac-
tion of the total processing time. Even so, the total 
speedup factor is rather limited, since variant callers for 
structural variants consume time comparable to that 
consumed by bwa-mem. Thus, to improve the total per-
formance, it is necessary to improve the performance of 
the variant caller here as well.

There is still much room for performance improve-
ment in our new aligner, and we hope to report on 
improving performance in the near future.

Table 5 Throughput of systems in terms of TBp/day

System Processor # of nodes Performance (TBp/day) Performance 
per node

This work AMD threadripper 3990X 1 5.8 5.8

Franke and Crowgrey [5] NVIDIA V100 4 1.2 0.3

Suzuki et al [12] Fujitsu A64fx 96 5.0 0.05

Fig. 6 Time in second T to process HG002 sample data 
as the function of the number of Threads, Nthreads . Dashed line 
indidates ideal 1/Nthreads scaling. For Nthreads > 64 , the result 
is shown in a dotted curve since the physical number of cores is 64
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Appendix 1
Overview of the construction steps for the hybrid data 
structure
We construct the hybrid tree data structure in the fol-
lowing steps:

1. Make a single combined string of the genome, from chromo-
some data, so that one number can be used to specify both 
the chromosome and the location within that chromosome.

2. Make an array of 64-bit integers, in which each entry 
corresponds to one location in the combined genome 
string. This array corresponds to “locations” of Fig. 1.

3. Sort that array with the dictionary order of the 
genome string starting from the locations, with the 
maximum comparison length specified as “l” in the 
main text. This l is the length of the hash. In Fig. 1, 
this sorting is done using the “hash” values with l = 2. 
The sorted result is shown in Fig. 7.

4. Now we can count how many locations are assigned 
to each hash value, by comparing the hash values 
assigned to the consecutive entries in the sorted 
array (in Fig. 7), and assigning the locations with the 
same hash value to the hash value itself. The result of 
this counting is shown in Fig.  2. In the actual code, 
we can make this data structure by making an array 
of hash values and assigning the first location of that 
value in the sorted array to each of the hash values.

5. Finally, we need to construct the additional suffix-like 
tree structure for each hash value with two (or some 
given value) or more entries. This can be done through 
one of the usual algorithms to construct the suffix tree.

Appendix 2
Command Scripts
Command Scripts for our system

Listing 1: Commands for our system

Command Scripts for bwa-mem/gatk

Listing 2: Commands for bwa-mem/gatk
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