
Makino et al. Genomics & Informatics (2024) 22:19
https://doi.org/10.1186/s44342-024-00012-5

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Genomics & Informatics

Fast and accurate short-read alignment
with hybrid hash-tree data structure
Junichiro Makino1,2, Toshikazu Ebisuzaki3*, Ryutaro Himeno1,4 and Yoshihide Hayashizaki3,5

Abstract

Rapidly increasing the amount of short-read data generated by NGSs (new-generation sequencers) calls for the devel-
opment of fast and accurate read alignment programs. The programs based on the hash table (BLAST) and Burrows-
Wheeler transform (bwa-mem) are used, and the latter is known to give superior performance. We here present
a new algorithm, a hybrid of hash table and suffix tree, which we designed to speed up the alignment of short reads
against large reference sequences such as the human genome. The total turnaround time for processing one human
genome sample (read depth of 30) is just 31 min with our system while that was more than 25 h with bwa-mem/
gatk. The time for the aligner alone is 28 min for our system but around 2 h for bwa-mem. Our new algorithm
is 4.4 times faster than bwa-mem while achieving similar accuracy. Variant calling and other downstream analyses
after the alignment can be done with open-source tools such as SAMtools and Genome Analysis Toolkit (gatk) pack-
ages, as well as our own fast variant caller, which is well parallelized and much faster than gatk.

Keywords Human whole genome analysis, Short read, Alignment (mapping), Variant calling, Hash, Tree

1 Introduction
Present-day sequencers such as Illumina NextSeq and
BGI T7 can produce a full read of the human genome
of around 50 persons (read depth of 30) in one day. This
data corresponds to around 10TBp (base pair). This enor-
mous amount of data requires a new level of computa-
tional power for read alignment and variant calling. The
current “best practice” pipeline uses bwa-mem [7, 8] for
alignment and gatk [11] for variant calling. The use of

these tools on usual CPU-based servers would require
a large cluster system to handle the output of a single
sequencer, resulting in a significant increase in the total
cost which would compromise the advantage of modern
sequencers. Thus, it is of critical importance to improve
the performance of read alignment and variant calling
either by improving the hardware, software, or both.

There are many works to improve the performance
of human genome analysis, mostly by using faster
processors. Here we discuss a few recent achieve-
ments. A proprietary implementation of these tools on
a machine with four NVIDIA V100 GPUs realized a
speed of 175 min for human genome data with a read
depth of 50 with similar accuracies with gatk [5]. This
speed corresponds to 1.2 TBp/day. Thus, we can con-
struct a system that has the performance of 10 TBp/day
using 4 × 8 = 32 GPUs (or a somewhat smaller number
with newer GPUs such as A100 or H100). Such a sys-
tem would still be pretty expensive and would consume
a large amount of electricity. This implementation is
not a simple porting of bwa-mem and gatk but a newly

*Correspondence:
Toshikazu Ebisuzaki
ebisu@mail.jmlab.jp
1 Advanced Accelerating Systems Co. Ltd, Deiki 1-28, B1312, Kanazawa-ku,
Yokohama, Kanagawa 236-0021, Japan
2 Department of Planetology, Graduate School of Science, Kobe
University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8051, Japan
3 K.K. Dnaform, Ask Sanshin Building 3F, 2-6-29, Tsurumi-chuo, Tsurumi-ku,
Yokohama, Kanagawa 230-0051, Japan
4 Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode,
Urayasu, Chiba 279-0013, Japan
5 Medical Technology Innovation Center, Juntendo University, 2-1-1
Hongo, Bunkyo-ku, Tokyo 113-8421, Japan

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44342-024-00012-5&domain=pdf

Page 2 of 10Makino et al. Genomics & Informatics (2024) 22:19

developed code highly optimized to NVIDIA GPUs.
Therefore, the results of their system are not exactly the
same as those of the best practice pipeline. As a result,
they gave detailed discussions on the accuracy of their
system.

An implementation of bwa-mem and gatk on Super-
computer Fugaku with a Fujitsu A64fx processor has
been reported by Suzuki et al. [12]. The achieved perfor-
mance is around 200Gbps/h, or 5TBp/day using 96 nodes
of Supercomputer Fugaku. Thus, in principle, a 192-node
A64fx system can process the data from one sequencer,
but such a system is quite expensive and requires too
much space and electricity. This implementation is a
straightforward porting of bwa-mem and gatk to the
A64fx processor of Supercomputer Fugaku with some
modification of the source code to make use of the SVE
SIMD instruction set of the A64fx processor. Thus, the
calculation results are the same as those of the original
bwa-mem/gatk combination, and there is no need for a
detailed accuracy comparison. Since the gatk is not well
parallelized, they have implemented a fairly complex
scheduling algorithm in which multiple samples are pro-
cessed in one batch, so that they could improve the paral-
lel efficiency.

Illumina provides the hardware-based acceleration
system, Dragen, which realizes a throughput of around
10 TBp/day. This system apparently offers the best price-
performance ratio for human genome analysis. They offer
both the software-only and hardware-accelerated ver-
sions of their systems.

In summary, it is certainly possible to construct com-
puter systems that can process data from a modern
sequencer in real time, but such systems are very expen-
sive. To fully utilize the high performance of modern
sequencers for the analysis of the human genome, it is
necessary to significantly improve the performance of
both the alignment and variant calling. The latter can
be achieved by implementing the basic valiant calling
algorithms in efficient parallel programs, while the for-
mer requires a fundamentally new algorithm if we are to
achieve such improvement over existing best-performing
software.

We describe such a new algorithm, the hybrid hash-
tree algorithm. In this paper, we describe this new algo-
rithm and compare its performance and accuracy with
those of bwa-mem/gatk combination. The new algorithm
achieved much better performance while retaining the
accuracy comparable to that of bwa-mem/gatk.

2 Methods
2.1 Hash‑based algorithm
The hybrid hash-tree algorithm is based on the origi-
nal hash-based algorithm such as used in BLAST [1, 3].

A hash key is a fixed-length sequence of bases. With the
hash-based algorithm, for each of all possible hash keys of
a given length l , the locations in the reference sequence
that match that key are recorded. For a read, we first use
its first l base as a key. We store the locations of this key in
the reference. Then, we shift the starting position within
the read by a stride of s (typically s = 5), and store the
locations of the new key. We repeat this procedure until
we reach the end of the read.

Then we sort all candidate locations and search for the
locations at which several different positions in the read
match to the reference sequence. For example, if the read
is a perfect copy of one sub-sequence of the reference
sequence and if this sub-sequence appears in no other
location, each hash of the read would appear in the cor-
responding location of the reference sub-sequence and
there is no other place in the reference genome where all
hashes of the read appear the corresponding location of
the sub-sequence. Thus, we can determine the location of
the sequence.

Let us consider the reference sequence of AGT CAC
CAG AGA TGGC with length 16 as an example. With
l = 2 , we have 15 possible starting locations of keys. If we
encode ACGT as 0, 1, 2, 3, the locations and keys are as
shown in Fig. 1.

Therefore, the hash table should express the data struc-
ture shown in Fig. 2. If the key is, for example, 0, it should
return NULL, since there is no sequence AA in the
reference.

If we have sequence AGAGA as a read, for the first AG
(at position 0, when we count positions from the left and
starting with zero), we find candidate locations 0, 7, and
9 as shown in Fig. 2. Here, we shift starting position by
one and the key becomes GA, and get 8, 10. Since these

Fig. 1 Hash key values for 15 locations of reference sequence
AGT CAC CAG AGA TGGC. First, second and third columns show
the location, key value, and original string

Page 3 of 10Makino et al. Genomics & Informatics (2024) 22:19

locations correspond to position 1 in the read, to obtain
locations which correspond to position 0 we should sub-
tract one from these values to obtain 7, 9. For AG at posi-
tion 2, we have 0, 7, 9 (and thus 5, 7 for the first position
of the read), and 8, 10 for GA at position 3 in the read
(and thus 5, 7 for the first position of the read). In this
case, each key gives multiple values for the first position
of the read, but position 7 appears for all four keys and it
is the only value shared by all keys. Therefore, we know
that AGAGA matches with the reference location 7 and
the match is perfect (Appendix 1).

If there are SNPs in a read, the hash table gives different
results for starting positions that cover the locations of
SNPs. If there are inserts/deletions, the hash table gives
different (but near) locations for starting positions before
inserts/deletions and positions after. Thus, we can get
some information on mutations.

This algorithm is quite robust, but the calculation
cost per read can become very large. If we make, for
example, hash keys of 15 bases, the number of possible
values of keys is 415 ≃ 109, and the average number of
locations per key is around three since the length of the
human genome sequence is around 3 × 109. However,
some keys appear in a very large number of locations,
and that means such keys also appear in many reads.
These frequently appearing keys cause a huge increase
in the total calculation cost.

For example, if there is one hash key which appears
in 104 places in the reference sequence, the probabil-
ity that one read picks one of these 104 locations is
m× 10

4/3× 10
9
= m/3× 10

5 , where m is the length
of reads. Thus, if one read has the length of m = 150 ,
around one in 2000 reads picks up this pattern, and
its calculation cost can be 104 times higher than that

of other reads. Of course, if there is only one such key,
we could just ignore it. In practice, however, there is
a spectrum of keys appearing in different numbers of
locations. It is difficult to reduce the total calculation
cost using the hash-based algorithm.

2.2 The suffix tree
In principle, if we could use much longer keys, we should
be able to avoid this problem of too many matched loca-
tions. However, it is impractical to use the hash length
longer than 15, since the amount of memory needed
increases exponentially.

One solution for this problem is to use the suffix tree
[13]. The suffix tree is a tree structure corresponding
to the suffix array, and the suffix array is the alphabeti-
cally sorted array of all suffixes of the reference sequence.
Thus, the suffix array is essentially the array of hash keys
with a length the same as that of the reference sequence
itself. We can regard the suffix tree as a convenient way
to implement very long hash keys.

There are many different ways to make the data struc-
ture equivalent to the suffix tree [4]. Here we present a
conceptually simple one for illustration purposes, which
is not necessarily practical for actual reference sequence.
From the reference sequence of AGT CAC CAG AGA
TGGC, we first make an array of sequences. The first
element of the array is the reference itself, and the sec-
ond element is the same reference but with the first base
removed. For kth element, we remove the first k − 1
bases, and thus we have n elements, where n is the length
of the sequence Fig. 3.

Then we sort this array using the dictionary order to
obtain the suffix array. The result is shown in Fig. 4a.

We can now construct a tree structure corresponding
to the suffix array as shown in Fig. 4b. For one starting
location of the read, we can go down the suffix tree to
find the location(s) with the longest match. As a result,
the number of match locations is dramatically reduced.

Though conceptually simple, the suffix tree has not
been widely used for read alignment. One reason is that
it requires a large amount of memory. The data size of the
reference human genome sequence is around 1GB. The
suffix array would need 12 GB or 24 GB (depending on
whether one uses a 32-bit or 64-bit integer), and the suf-
fix tree can easily consume more than 100 GB. Fifteen
years ago, when the early versions of widely used genom-
ics programs such as bwa-mem and gatk were designed
and developed, the DRAM memory of more than 100 GB
was very expensive. Moreover, machines that could
house a large amount of memory were also very expen-
sive since they had to have a large number of memory
slots and thus must use expensive high-end server CPUs
and very expensive motherboards.

Fig. 2 Locations pointed by hash keys in the reference sequence
of AGT CAC CAG AGA TGGC. “NULL” means there is no location
for that key

Page 4 of 10Makino et al. Genomics & Informatics (2024) 22:19

At that time, it was clearly unpractical to use the suffix
tree, since there is an alternative data structure, Burrows-
Wheeler Transform (BWT), which is extremely memory
efficient. Thus, bwa-mem [7–9], which is currently the
golden standard read aligner, adopted BWT as its basic
algorithm and that was where its name, bwa-mem, came
from (Burrows-Wheeler Alignment Tool, Maximal Exact
Matches). To make use of computers with a small amount
of memory then available, it was essential to use a mem-
ory-efficient data structure and the choice to use BWT
made perfect sense.

As of 2023, desktop PC motherboards with just four
memory slots can house 128GB of memory for less than
1000 USD. Thus, it might be time to rethink what is the
best algorithm for the read alignment. We use the suffix
tree itself instead of BWT.

The advantage of the suffix tree is that the algorithm
is much simpler compared to the suffix array and BWT,
and thus requires a smaller number of the main memory
access. To extend the match by one base, the suffix tree
algorithm needs to access just one tree node, which is
usually a single instance of a class. In contrast, the suf-
fix array and BWT require accesses to two locations in
the suffix array and two more accesses to supporting data
structures. Even though the calculation cost itself is not
much different, the number of main memory accesses is
much smaller for the suffix tree, since the data from one
tree node usually fits in the one cache line, while sev-
eral accesses required by BWT result in the accesses to

multiple cache lines. Thus, the extension of the match
with the suffix tree is much faster compared to that with
BWT, on modern computers with the hierarchical cache
structure.

2.3 The hybrid hash‑tree algorithm
Even though the suffix tree is quite efficient, it is possi-
ble to further improve its efficiency by the following two
modifications. The first one is to combine the tree search
with the hash key search. We can replace the first l levels
of the suffix tree with the hash key of the same length,
and thus eliminate the first l − 1 memory access. As we
have stated above, l = 15 is practical with modern com-
puter systems. This modification improves the search
speed significantly since, for most cases, the initial hash
key search reduces the candidate locations to just a few
by single memory access, instead of following the tree
structure 15 times. Figure 5 shows the hybrid data struc-
ture in the case of l = 2.

Another way to improve the efficiency of the suffix tree
algorithm is to collapse multiple levels of a tree into a
single level. For example, we can replace a two-level tree
with four children at each level with a one-level tree with
16 children. Using this transformation, we can extend the
match by two bases in one iteration, in other words, in
one memory access, as far as the single node data fits into
one cache line (typically 64 bytes). A tree node with 16
children can fit into 64-byte cache line, while that with 64
children does not. Therefore, instead of a suffix tree with
each node corresponding to one base, we use a collapsed
tree, with each node corresponding to two bases. This
transformation is easy for the suffix tree, but not easy and
might be impossible for the suffix array with BWT.

2.4 Search strategy
With the hash-based algorithm, such as used in BLAST,
we obtain the location candidates for keys of length l in
the read of length m with a stride of s. Thus, there are
(m− l − s + 2)/s such keys. With our hybrid algorithm,
we could use this same strategy, but it is obviously not
ideal. When we find a rather long match, with the next
starting position shifted by a stride of five or so we will
certainly find a similarly long match. Also, for the major-
ity of reads the match is either exact or containing just
one SNP. Thus, the calculation cost of the hybrid algo-
rithm can be O(m2) . This is certainly not ideal.

We can avoid this problem by simply shifting the next
starting point by the amount comparable to the match
length itself. For example, if we shift the starting position
by p/2 , where p is the current match length, the total cost
of matching calculation is reduced to O(m) . On the other
hand, with this strategy, we can miss the longest match,

Fig. 3 The suffix array before sort for the reference sequence of AGT
CAC CAG AGA TGGC

Page 5 of 10Makino et al. Genomics & Informatics (2024) 22:19

since the true longest match could start at the positions
in the read we skipped.

A simple solution to this problem is to keep candi-
date locations with match lengths more than half of the
apparent maximum match for the score calculation in the
next stage. A longer match, if exists, starts somewhere
between the current starting position and the next start-
ing position. In the worst case, where the actual match is
the shortest and appears at the leftmost position, it starts
at the position next to the current starting position and
extends by two bases after the end position of the cur-
rent search. Therefore, if we start at the position shifted
by p/2 from the current starting position, we can find the
latter half of the longest match with length (p+ 2)/2.

For the search for chimeric alignments, our strategy
can be problematic since the candidate regions for a chi-
meric alignment can be very similar and yet contain, for
example, multiple SNPs. Actually, in this case, the longest
exact match might not give the best matching location
either, since the best match location might contain mul-
tiple SNPs and the length of the longest exact match loca-
tion can be short. In such cases, it is necessary to make
the shift length small so that we can find all short-match
locations.

2.5 Extension and scoring
For the extension of the match, we use the usual Smith-
Waterman-Gotoh (SWG) algorithm [6], and we take into
account the Base Quality Score Recalibration procedure
[2] when assigning the final scores to the matches. In our
implementation, the actual code for the SWG algorithm

uses the AVX2 SIMD instruction set, so that we can take
advantage of recent processors from both Intel and AMD.

2.6 Parallelization strategy
To make efficient use of modern CPUs, it is essential to
make all steps of genome analysis well parallelized for
a large number of cores, even when we just use a single
desk-side workstation. This is because modern high-end
processors have a large number of cores integrated into
one package. For example, AMD EPYC 9000 series pro-
cessors, announced in November 2022, have up to 96
cores in one package, and high-end servers can house
two processor packages in one chassis, resulting in 192
cores in one computing node. It is, however, not easy
to design a program whose performance scales well for
more than 100 cores. Of course, large supercomputers
have 1 million or more cores, and at least a few programs
can make use of those huge numbers of cores. However,
that is usually for extremely large-scale problems.

From the point of view of parallel processing, one
advantage of human whole genome analysis is that there
are lots of potential parallelism in all stages of processing.
First of all, the alignment of a read can be done indepen-
dently of those of all other reads. If we use the current

Fig. 4 The suffix array (a) and the corresponding suffix tree (b) for the reference sequence of AGT CAC CAG AGA TGGC. Here “X” in the tree means
the end of the sequence

Fig. 5 The hybrid hash-tree tree for reference sequence of AGT CAC
CAG AGA TGGC

Page 6 of 10Makino et al. Genomics & Informatics (2024) 22:19

typical value of the read length of 150, a (pair of) fasta
files for the read depth of 30 contains 100 G bases or
around 300 M read pairs, and all of these 300 M read
pairs can be processed in parallel.

There is, however, one practical issue. At least in the case
of sample data, fasta files are usually provided as single big
text files compressed with gzip. This means that it should
be decompressed, and because gzip-compressed file can
only be decompressed sequentially, this decompression can
take time longer than the rest of the analysis. The actual
sequencer should be able to generate many small fasta files
for the data of one human genome since the actual read-
ing process is highly parallel. In this paper, we assume that
the input data are available as a number of small fasta files,
where the total number of the fasta files is q.

Our new hybrid hash-tree algorithm requires a fairly
large (around 100 GB) table to express the reference
genome. Therefore, this table must be shared by pro-
cesses that handle the reads in parallel. We therefore
implemented the parallelization using OpenMP. In our
implementation, one OpenMP-parallelized loop pro-
cesses the small fasta files, one pair of files in one itera-
tion. With OpenMP, we can specify how many threads
are run in parallel at runtime. Since different threads pro-
cess different files, there is very low parallelization over-
head. Also, we carefully avoided any overhead caused by
library calls and memory allocation/deallocation/gar-
bage collection. Thus, as we will see in Section 3, we have
achieved a very good parallel speedup. We are impressed
by the fact that the Linux operating system can handle
huge numbers of I/O requests quite well. This part of the
program outputs candidates of matches for each read.

The SWG program, which performs the match through
the Smith-Waterman-Gotoh algorithm and calculates
the matching score, does not require large tables. There-
fore, we implement this part as a single-thread program,
which processes one file and generates SAM-format out-
put. For parallel processing, we just run a fixed number
of this program in parallel.

The output of the SWG program is then processed
by the program for variant calling. The parallelism also
exists for variant calling, although it is not of the level
of reads, but of the level of the locations in the reference
genome. Conceptually, what we do for variant calling is,
for each base location in the reference genome, to see if
the bases of reads aligned at its location contain SNP or
other mutations. To do this, we need to be able to find
all reads that cover the location we are looking at, and
this is most easily done by sorting reads according to the
aligned locations.

Usually sorting of reads is done using samtools. Here,
again, the processing time of samtools sort can be longer

than the rest of the processing, and it is important to
speed up the sorting process. We have implemented par-
allel off-the-core bucket sort. We divide the reference
locations into r regions (r ∼ 1000 or more). The SWG
program creates r output files and writes each SAM
record to the file with the appropriate region. Since there
are q small fasta files, we will have pq small SAM files. If
we call one SAM file generated from fasta file i for refer-
ence region j as Sij , we can obtain all SAM records for
region j by combining all Sij for 0 ≤ i < q − 1 . The vari-
ant caller reads these files and sorts SAM record on the
memory.

2.7 Variant calling
As we stated in the previous subsection, our variant caller
accepts the SAM records in a specified range of the refer-
ence sequence and performs sorting. Then it performs
so-called MarkDuplicates, and checks if there is SNP or
INDEL for each location in the reference region.

2.8 Hardware and software platform
For all test calculations in this paper, we used a Linux
server with AMD ThreadRipper 3990X 64-core proces-
sor, 256 GB of DDR4 main memory, and 4TB of PCIe
gen3 M.2. SSDs.

The operating system is Ubuntu 20.4 LTS. We used
gcc version 9.4.0 (Ubuntu 9.4.0-1ubuntu1 20.04.1) which
comes with the operating system.

3 Results
3.1 Benchmark problem
As the benchmark problem, we used the data provided
for PrecisionFDA Truth Challenge V2 [10]. We follow the
challenge contest procedure and show the accuracy and
timing results. In Appendix 2, we show the command
parameters used for bwa-mem/gatk processing. We use
bwa-mem/gatk for comparison since it is the current
“golden standard” for genome analysis.

3.2 Accuracy
Table 1 gives the accuracy result, as was required in the
PrecisionFDA Truth Challenge V2 contest. For each of
the three sample data, HG002, HG003, and HG004, we
present the result with bwa-mem/gatk, as well as two
results with our system. One is with the high-accuracy
mode, and the other with the low-accuracy, fast mode.
As in the case of the original Truth Challenge V2 contest,
some of the adjustable parameters for our system were
tuned to give the best result for HG002, and the same
set of parameters is used for HG003 and HG004. We can
see that the final F-measure values of our high-accuracy
results are slightly better than those of bwa-mem/gatk,

Page 7 of 10Makino et al. Genomics & Informatics (2024) 22:19

while those of low-accuracy results are slightly worse.
The difference is, in all cases, quite small, and we can
safely conclude that our system has achieved the accu-
racy of the same level as that of bwa-mem/gatk.

Table 2 shows the accuracy for SNPs and INDELs (non-
SNPs), for the case of the HG002 sample. Our result is
slightly better than that of bwa-mem/gatk for SNPs and
slightly worse for INDELs. Again, the difference is very
small.

Compared to other results presented in Olson et al.
[10], our results (and that of bwa-mem/gatk) are of
course not quite the best, even within non-deep-learning
results, but are close to the average of them, since the
results for Illumina data range from 97 to 99.7%.

3.3 Timing
Tables 3 and 4 show the elapsed time to process HG002
sample using our system and bwa-mem/gatk, respectively.
In both cases, the time for each command and the total
time are shown. For our system, times for both the high-
accuracy and low-accuracy modes are shown. When we
compare the total time, our low-accuracy mode is 49.5
times faster than bwa-mem/gatk, while our high-accuracy
mode is 26.4 times faster. As we have stated earlier. bwa-
mem uses less than 10% of the total time. If we compare
the time for bwa-mem alone and that for our aas-match
part, which does roughly what bwa-mem does, our low-
accuracy mode is 4.4 times faster, and high-accuracy
mode is 2.2 times faster than bwa-mem, respectively.

Table 1 Accuracy test results

(a) HG002
True positives True calls False-pos False-neg Precision Sensitivity F-measure

Gatk 3854404 3855258 54542 37091 0.9860 0.9905 0.9883

High 3843485 3845450 38814 48010 0.9900 0.9877 0.9888

Low 3840691 3841762 44070 50804 0.9887 0.9869 0.9878

(b) HG003
True positives True calls False-pos False-neg Precision Sensitivity F-measure

Gatk 3795148 3795094 53773 36846 0.9860 0.9904 0.9882

High 3785845 3786914 36724 46149 0.9904 0.9880 0.9892

Low 3783096 3783268 41959 48898 0.9890 0.9872 0.881

(c) HG004
True positives True calls False-pos False-neg Precision Sensitivity F-measure

Gatk 3819599 3819528 54716 37529 0.9859 0.9903 0.9881

High 3808201 3809240 39099 48927 0.9898 0.9873 0.9886

Low 3805555 3805753 43751 51573 0.9886 0.9866 0.9876

Table 2 HG002 SNP/INDEL result

true positives false positives true positives calls false negatives precision sensitivity f‑measure

Gatk SNP 3336055 45856 3337490 28373 0.9864 0.9916 0.9890

Gatk INDEL 518349 8686 517768 8718 0.9835 0.9835 0.9835

High SNP 3325657 29106 3329961 38771 0.9913 0.9885 0.9899

High INDEL 517828 9708 515489 9239 0.9815 0.9825 0.9820

Table 3 Time in minutes to process HG002 sample using our
system

High accuracy Low accuracy

ass-match 55.82 28.32

ass-vcall 2.68 2.92

Total 58.50 31.23

Table 4 Time in minutes to process HG002 sample using bwa-
mem/gatk

bwa-mem 124.40

MarkDuplicates 135.75

BaseRecalibrator 203.67

PrintReads 716.67

HaplotypeCaller 363.83

Total 1544.32

Page 8 of 10Makino et al. Genomics & Informatics (2024) 22:19

For the procedures after bwa-mem, with our system
everything is done in a single command, aas-vcall, in less
than 3 min. It effectively does the sorting of SAM records,
MarkDuplicates, BaseRecalibration, and variant calling.
Compared to gatk tools which take around 24 h in total,
our system is around 500 times faster. If we compare the
time for HaplotypeCaller only, our system is still 120 times
faster. This difference is not due to any new algorithm, but
primarily because everything is written in C language in
such a way that there is no serious parallelization overhead.

Table 5 shows the throughput of systems in terms of
TBp/day, for the present work, NVIDIA V100 [5] and
Fujitsu A64fx [12]. We can see that our system is by far
more cost-effective compared to systems reported in
recent works. With our software, a single-processor
workstation achieves a throughput comparable to (but
faster than) those of 16 NVIDIA V100 GPGPUs or 96
Fujitsu A64fx processors.

3.4 Parallel efficiency
Figure 6 shows the time to process HG002 sample data as
the function of the number of threads used. The dashed

line indicates the ideal parallel speedup. We can see that
processing speed is almost proportional to the number of
threads, for up to 64 threads. For more than 64 threads,
the gain is small since we used 64 cores.

The main reason why the speedup is somewhat less
than ideal for a large number of cores is because of the
limitation of the clock frequency. On AMD ThreadRip-
per 3990X processor, when only a small number of cores
are active, their clock frequency can reach 4.3 GHz.
However, when a large number of cores are used, the
clock frequency goes down due to the limit in the power
consumption. We found that the clock frequency was
3.9 GHz for 32 threads and 3.3 GHz for 64 and 126
threads. This reduced clock frequency explains why the
parallel speedup is not ideal.

4 Discussions
In this paper, we present the algorithm, implementation,
and performance of our fast aligner for short reads. Our
system is two to four times faster than bwa-mem on the
same computer system. The accuracy achieved for data-
sets used in Precision FDA Truth Challenge V2 is very
close to that of bwa-mem/gatk for our low-accuracy
mode (F-measure difference of 0.01–0.05%), and slightly
more accurate for our high-accuracy mode.

We also developed a new implementation of the vari-
ant caller, which is used to obtain the above result. It
can process Truth Challenge V2 samples in less than
3 min on a 64-core AMD ThreadRipper processor. Our
variant caller is more than 100 times faster than gatk
Haplotype-Caller.

Right now, our system has been tested only for ger-
mline mutations and is not well-tested for somatic
mutations or structural variants. We are currently
working on the efficient detection of structural vari-
ants. Here, bwa-mem does consume a significant frac-
tion of the total processing time. Even so, the total
speedup factor is rather limited, since variant callers for
structural variants consume time comparable to that
consumed by bwa-mem. Thus, to improve the total per-
formance, it is necessary to improve the performance of
the variant caller here as well.

There is still much room for performance improve-
ment in our new aligner, and we hope to report on
improving performance in the near future.

Table 5 Throughput of systems in terms of TBp/day

System Processor # of nodes Performance (TBp/day) Performance
per node

This work AMD threadripper 3990X 1 5.8 5.8

Franke and Crowgrey [5] NVIDIA V100 4 1.2 0.3

Suzuki et al [12] Fujitsu A64fx 96 5.0 0.05

Fig. 6 Time in second T to process HG002 sample data
as the function of the number of Threads, Nthreads . Dashed line
indidates ideal 1/Nthreads scaling. For Nthreads > 64 , the result
is shown in a dotted curve since the physical number of cores is 64

Page 9 of 10Makino et al. Genomics & Informatics (2024) 22:19

Appendix 1
Overview of the construction steps for the hybrid data
structure
We construct the hybrid tree data structure in the fol-
lowing steps:

1. Make a single combined string of the genome, from chromo-
some data, so that one number can be used to specify both
the chromosome and the location within that chromosome.

2. Make an array of 64-bit integers, in which each entry
corresponds to one location in the combined genome
string. This array corresponds to “locations” of Fig. 1.

3. Sort that array with the dictionary order of the
genome string starting from the locations, with the
maximum comparison length specified as “l” in the
main text. This l is the length of the hash. In Fig. 1,
this sorting is done using the “hash” values with l = 2.
The sorted result is shown in Fig. 7.

4. Now we can count how many locations are assigned
to each hash value, by comparing the hash values
assigned to the consecutive entries in the sorted
array (in Fig. 7), and assigning the locations with the
same hash value to the hash value itself. The result of
this counting is shown in Fig. 2. In the actual code,
we can make this data structure by making an array
of hash values and assigning the first location of that
value in the sorted array to each of the hash values.

5. Finally, we need to construct the additional suffix-like
tree structure for each hash value with two (or some
given value) or more entries. This can be done through
one of the usual algorithms to construct the suffix tree.

Appendix 2
Command Scripts
Command Scripts for our system

Listing 1: Commands for our system

Command Scripts for bwa-mem/gatk

Listing 2: Commands for bwa-mem/gatk

Acknowledgements
This work was done under the research contract between Advanced Acceler-
ating Systems Co. Ltd. and K. K. Dnaform.

Authors’ contributions
Conceptualization: JM, TE, RH, and YH. Data curation: JM. Formal analysis: JM.
Funding acquisition: YH and RH. Methodology: JM. Writing—original draft: JM.
Writing—review and editing: JM and TE. All authors read and approved the
final manuscript.

Declarations

Ethics approval and consent to participate
Not applicable.

Fig. 7 Index array after sort by hash values location hash value

Page 10 of 10Makino et al. Genomics & Informatics (2024) 22:19

Competing interests
The authors declare that they have no conflicts of interest.

Accepted: 10 June 2024

References
 1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment

search tool. J Mol Biol. 1990;215(3):403–10 ISSN 0022-2836.
 2. Caetano-Anolles D. Base quality score recalibration (bqsr). 2023.
 3. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,

Madden TL. Blast+: architecture and applications. BMC Bioinformatics.
2009;10(1):421 (ISSN 1471-2105).

 4. Farach M. Optimal suffix tree construction with large alphabets. In: Pro-
ceedings 38th Annual Symposium on Foundations of Computer Science.
1997. p. 137–43.

 5. Franke KR, Crowgey EL. Accelerating next generation sequencing data
analysis: an evaluation of optimized best practices for genome analysis
toolkit algorithms. Genomics Inform. 2020;18(1):e10.

 6. Gotoh O. An improved algorithm for matching biological sequences. J
Mol Biol. 1982;162(3):705–8 (ISSN 0022-2836).

 7. Li H. Exploring single-sample SNP and INDEL calling with whole-genome
de novo assembly. Bioinformatics. 2012;28(14):1838–44 (ISSN 1367-4803).

 8. H. Li. Aligning sequence reads, clone sequences and assembly contigs
with bwa-mem, 2013. URL https:// arxiv. org/ abs/ 1303. 3997.

 9. Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics. 2009;25(14):1754–60 (ISSN 1367-4803).

 10. Olson ND, Wagner J, McDaniel J, Stephens SH, Westreich ST, Prasanna AG,
Johanson E, Boja E, Maier EJ, Serang O, J ́aspez D, Lorenzo-Salazar JM, A.
Mu ̃nozBarrera JM, Rubio-Rodr ́ıguez LA, Flores C, Kyriakidis K, Malousi A,
Shafin K, Pesout T, Jain M, Paten B, Chang PC, Kolesnikov A, Nattestad M,
Baid G, Goel S, Yang H, Carroll A, Eveleigh R, Bourgey M, Bourque G, Li G,
Ma C, Tang L, Du Y, Zhang S, Morata J, Tonda R, Parra G, Trotta JR, Brueffer
C, Demirkaya-Budak S, Kabakci-Zorlu D, Turgut D, ̈OzemKalay, Budak G,
Narcı K, Arslan E, Brown R, Johnson IJ, Dolgoborodov A, Semenyuk V, Jain
A, Tetikol HS, Jain V, Ruehle M, Lajoie B, Roddey C, Catreux S, Mehio R,
Ahsan MU, Liu Q, Wang K, Ebrahim Sahraeian SM, Fang LT, Mohiyuddin
M, Hung C, Jain C, Feng H, Li Z, Chen L, Sedlazeck FJ and Zook JM. Preci-
sionfda truth challenge v2: Calling variants from short and long reads in
difficult-to-map regions. Cell Genomics. 2022 2(5):100129.

 11. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der
Auwera GA, Kling DE, Gauthier LD, Levy-Moonshine A, Roazen D, Shakir
K, Thibault J, Chandran S, Whelan C, Lek M, Gabriel S, Daly MJ, Neale B,
MacArthur DG and Banks E. Scaling accurate genetic variant discovery
to tens of thousands of samples. bioRxiv. 2018. https:// doi. org/ 10. 1101/
201178.

 12. Suzuki S, Ito S, K. Sakai S, Inada Y, Miyoshi I, Ishikawa H, and Miyano S.
Optimization and performance evaluation of whole-genome analysys
program genomon for super computer fugaku (in Japanese). Technical
Report 18, RIKEN R-CCS, 2021.

 13. Weiner P. Linear pattern matching algorithms. In: 14th Annual Sympo-
sium on Switching and Automata Theory (swat 1973). 1973. p. 1–11.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://arxiv.org/abs/1303.3997
https://doi.org/10.1101/201178
https://doi.org/10.1101/201178

	Fast and accurate short-read alignment with hybrid hash-tree data structure
	Abstract
	1 Introduction
	2 Methods
	2.1 Hash-based algorithm
	2.2 The suffix tree
	2.3 The hybrid hash-tree algorithm
	2.4 Search strategy
	2.5 Extension and scoring
	2.6 Parallelization strategy
	2.7 Variant calling
	2.8 Hardware and software platform

	3 Results
	3.1 Benchmark problem
	3.2 Accuracy
	3.3 Timing
	3.4 Parallel efficiency

	4 Discussions
	Appendix 1
	Overview of the construction steps for the hybrid data structure

	Appendix 2
	Command Scripts

	Acknowledgements
	References

