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Abstract 

Electronic phenotyping involves a detailed analysis of both structured and unstructured data, employing rule-based 
methods, machine learning, natural language processing, and hybrid approaches. Currently, the development 
of accurate phenotype definitions demands extensive literature reviews and clinical experts, rendering the process 
time-consuming and inherently unscalable. Large language models offer a promising avenue for automating pheno-
type definition extraction but come with significant drawbacks, including reliability issues, the tendency to generate 
non-factual data (“hallucinations”), misleading results, and potential harm. To address these challenges, our study 
embarked on two key objectives: (1) defining a standard evaluation set to ensure large language models outputs are 
both useful and reliable and (2) evaluating various prompting approaches to extract phenotype definitions from large 
language models, assessing them with our established evaluation task. Our findings reveal promising results that still 
require human evaluation and validation for this task. However, enhanced phenotype extraction is possible, reducing 
the amount of time spent in literature review and evaluation.
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1 Introduction
In the era of digital healthcare, the advent of electronic 
health records (EHRs) and the proliferation of digital 
health data are catalyzing a paradigm shift in medical 
research and patient care. At the heart of this transfor-
mation is electronic phenotyping, a process that uti-
lizes these vast datasets to identify and classify patient 
phenotypes. Phenotyping, in the context of biomedi-
cal research, refers to the process of extracting relevant 
health characteristics from patient data that can be cor-
related with specific health outcomes, diseases, or condi-
tions. This process is critical for advancing personalized 
medicine, streamlining patient care, and driving for-
ward biomedical discoveries. Electronic phenotyping 

harnesses both structured and unstructured data, inte-
grating rule-based systems, machine learning techniques, 
natural language processing (NLP), and hybrid method-
ologies to analyze and categorize patient information [1].

The significance of electronic phenotyping cannot 
be overstated; it forms the cornerstone of efforts to tai-
lor healthcare to individual patient needs [2], enhance 
the understanding of disease mechanisms[3], and facili-
tate the development of novel therapeutic interventions. 
However, the scalability of electronic phenotyping poses 
a formidable challenge. Currently, defining a pheno-
type requires exhaustive literature reviews and intensive 
collaboration among clinicians, domain experts, and 
researchers to achieve consensus on precise phenotype 
definitions [4]. This iterative and collaborative process is 
time-consuming and resource-intensive, making the cur-
rent approach to phenotyping less scalable and adaptable 
to the fast-paced advancements in medical research and 
emerging health crises. As the volume of digital health 
data explodes and the complexity of diseases becomes 
more apparent, the ability to quickly and accurately 
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define, refine, and utilize phenotypes is paramount [5]. 
Scalable and portable phenotyping processes can acceler-
ate the pace of research, enable the rapid identification of 
patient cohorts for clinical trials, and improve the detec-
tion and treatment of diseases at an individual level [6].

Leveraging machine learning for electronic phenotyp-
ing introduces a scalable approach to processing and 
interpreting healthcare data, fundamentally shifting the 
paradigm from manual, labor-intensive methods to auto-
mated, data-driven insights [7–9]. In the beginning, both 
rule-based and machine learning models were utilized to 
identify phenotypes [10]. However, the expansion of large 
language models (LLMs) to include hundreds of billions 
of parameters has introduced new abilities like few-shot 
learning [11]. This development enables LLMs to achieve 
good performance on tasks with minimal training, using 
only a small number of examples [12]. Several large lan-
guage models like PhenoBCBERT and PhenoGPT are 
accurately able to infer essential phenotypic information 
from the given context [13]. This rapid increase in experi-
mentation with LLMs has created pathways for research-
ers to utilize LLMs for electronic phenotyping.

In this work, we propose an innovative approach to 
address the scalability challenge in electronic phenotyp-
ing. Our work is anchored in two main objectives: first, 
to define a standard evaluation task/set specifically tai-
lored for this domain, and second, to evaluate various 
prompting approaches for extracting phenotype defini-
tions from LLMs. The establishment of a standard evalu-
ation task is crucial as it serves as a benchmark to ensure 
that the outputs produced by LLMs are not only useful 
but reliable. Following this, we explore and assess differ-
ent prompting strategies to effectively extract phenotype 
definitions from LLMs, utilizing the evaluation task we 
have created. Additionally, we focus on the behavior of 
LLMs. This dual approach represents a significant step 
forward in automating the phenotype definition process, 
leveraging the advanced capabilities of LLMs to interpret 
and generate natural language. By doing so, we aim to 
significantly reduce the time and effort currently required 
to define phenotypes, thereby enhancing the scalability 

and efficiency of electronic phenotyping. Our exploration 
into the use of LLMs for phenotype definition extrac-
tion is intended to pave the way for more scalable and 
adaptable phenotyping processes, ultimately accelerating 
innovation and improving outcomes in healthcare and 
biomedical research.

2  Data preparation
The primary objective of this work is to create an evalu-
ation set. We identified 10 professionally created phe-
notypes, 5 from PheKB [14] and 5 from the OHDSI 
phenotype library [15]. The extractions of the phenotypes 
from sources like OHDSI phenotype library and HDRUK 
phenotype library [16] are relatively easier as the pheno-
types are in a structured format. OHDSI uses the OMOP 
(Observational Medical Outcomes Partnership) Com-
mon Data Model (CDM), which standardizes healthcare 
data into a consistent format, facilitating efficient and 
scalable analysis across different databases. This stand-
ardization reduces the complexity and effort required to 
extract and analyze phenotypes, as researchers can apply 
the same query across multiple datasets without needing 
to adjust for disparate data structures However, PheKB 
provides a platform for developing, validating, and shar-
ing phenotype algorithms without mandating a spe-
cific data model. This approach offers flexibility and can 
accommodate a wide variety of data structures but may 
require more effort to adapt and apply algorithms across 
different EHR systems and databases. Hence, manual 
curation was required to format the PheKB phenotype 
definitions. We developed an automated computer code 
to automatically extract and format the elements from 
the phenotypes to facilitate automatic evaluation. Table 1 
presents the extracted elements of the 10 professionally 
created phenotypes. The code count in the following 
table refers to the frequency or occurrence of a specific 
code within a dataset or a set of criteria. For exam-
ple, “1” indicates that the code is required or included 
exactly once within the criteria and “1 + ” indicates that 
the code can be included more than once, meaning it 
might appear multiple times or is required at least once 

Table 1 Extracted elements from the phenotypes

Logic Vocabulary Concept code Concept name Code count

Inclusion SNOMED 194823009 Acute coronary insufficiency 1 + 

Inclusion SNOMED 791000119109 Angina associated with type 2 diabetes 
mellitus

1

Inclusion SNOMED 61490001 Angina, class I 1 + 

Inclusion SNOMED 41334000 Angina, class II 1

Inclusion SNOMED 85284003 Angina, class III 1 + 

Inclusion SNOMED 89323001 Angina, class IV 1 + 
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but can occur multiple times in the dataset or phenotype 
definition. The “Logic” column defines the role that each 
code plays in the overall logical framework of the pheno-
type. It determines whether the presence of a particular 
condition (represented by the code) qualifies a patient 
for inclusion or exclusion in the phenotype group being 
studied or defined.

3  Evaluation setup
One of our objectives in this work is to evaluate 
prompting approaches to extract phenotype defini-
tions from LLMs and assess them using the evalu-
ation set created in the data preparation section. We 
experimented with several prompts to create a prompt 
which can be utilized for extracting all elements of a 
phenotype and finally used a prompt which brought 
in relatively consistent results from the LLMs. We 
experimented with several prompting methods like 
zero shot, one-shot, iterative prompting, seeding, and 
finally developed a prompt. The following is our final 
prompt used for evaluation: “Provide a computational 
phenotype for < INSERT_PHENOTYPE > with codes 
needed and their name, and logical conditions as well 
as how many codes are needed. In the following tabu-
lar format: Logic (inclusion or exclusion), code vocab-
ulary, code identifier, code name, and code count.”

To evaluate the efficiency of LLMs, we considered 
two different scenarios. In the first scenario, we com-
pared the definitions extracted by GPT 3.5 and GPT 
4. In the second scenario, we compared the definitions 
extracted by GPT4 and manually curated definitions 
(by humans). In both the scenarios, we present the fol-
lowing metrics:

a) Overlap of codes: This metric refers to the extent to 
which the codes generated by GPT models match or 
overlap with the codes found in the original pheno-
type definitions.

b) Logic matching: This metric refers to the degree to 
which the logical structure or conditions (such as 
inclusion/exclusion criteria) in the model’s output 
align with those in the original phenotype definitions.

c) Overlap of strings: This metric measures the overlap 
in the text or strings of words between the output of 
the GPT model and the original phenotype defini-
tions.

Additionally, we measured the inconsistencies 
and incorrect definitions and presented them in our 
discussion.

4  Results
We present the results for scenarios 1 and 2 in Tables 2 
and 3. We calculated the average, minimum, and maxi-
mum percentage of each of the metrics (e.g., codes 
overlap).

The key findings of this scenario indicate that GPT 
models are better in generating precise codes over textual 
strings. There is a considerable variability in the models’ 
outputs indicating a challenge in achieving consistent 
results across different iterations. An interesting result 
here is that LLMs demonstrate solid competency while 
extracting the logical conditions of inclusion/exclusion 
of codes in phenotype definitions. These insights show 
that one potential reason for the low overlap in codes and 
strings within definitions is the great variability of code 
systems used in phenotype definitions found in literature 
and on the definitions themselves [17]. We theorize that 
papers and abstracts are part of the GPT model training 
sets, and this is reflected in the inconsistent LLM output.

A noteworthy observation is that the codes generated 
by GPT-4 exhibit a marginally higher reliability com-
pared to the textual strings or concept names. The codes 
denominator for the codes overlap metric is the number 
of codes from GPT4. Furthermore, despite the overall 
fewer codes generated by GPT-4, a closer examination 
suggests that these codes may possess a higher positive 
predictive value (PPV) for accurately identifying the 
intended phenotypes. This finding suggests that while the 
volume of generated codes is limited, their specificity and 
relevance to the phenotypes are notably high, indicating 
that the model might be averaging out from source and 
could be surfacing the most popular ones. Table  4 pre-
sents the GPT hallucinations with codes. In this work, 

Table 2 Comparison between GPT 3.5 vs GPT 4

Metric Average % Minimum % Maximum %

Codes overlap 41.26 0.00 75.00

Logic overlap 80.00 50.00 100.00

Strings overlap 28.52 0.00 50.00

Table 3 Comparison between human definition vs GPT models

Model Metric Average % Minimum % Maximum %

Codes overlap 50.94 20.00 88.89

GPT 4 Logic overlap 90.00 50.00 100.00

Strings overlap 48.59 0.00 100.00

Codes overlap 27.51 10.00 85.20

GPT 3.5 Logic overlap 70.20 0.00 90.00

Strings overlap 41.28 0.00 75.12
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we compared the performance of GPT-3.5 and GPT-4 
models in generating phenotype codes, using Biomedi-
cal Content Explorer [18] linked with PubDictionaries, 
ICD10, and ICD 10 CM dictionaries; with this compari-
son, we show the biggest weakness of these LLM model 
as it is highly inaccurate and full of hallucinations. We 
discovered that hallucinations were notably present in 
both models, with GPT-3.5 showing a higher tendency 
towards these inaccuracies compared to GPT-4. These 
observations emphasize the imperative for cautious use 
and meticulous verification of data produced by LLMs, 
especially for phenotypes less documented in scientific 
literature. The pattern observed suggests a direct rela-
tionship between the scarcity of literature on specific 
phenotypes and the models’ propensity to generate non-
existent codes, pointing to a crucial area for enhance-
ment in the training methodologies of these models.

Additionally, we performed a detailed evaluation of 
the capabilities of GPT-3.5 and GPT-4 models in accu-
rately extracting phenotype definitions, a crucial step 
toward their integration into medical informatics. This 
entails an extensive series of evaluations comparing these 
large language models (LLMs) against human-generated 
definitions to assess various aspects: the accuracy of 
code mapping, the consistency of code names, the logi-
cal structuring of definitions, and the degree of overlap 
in the codes identified. In our experiment, we compared 
human-generated definitions of phenotypes against 
those produced by GPT-4, focusing on the process of 
code mapping to align disparate coding systems into a 
unified framework. Table  5 presents the results of our 
evaluations.

5  Discussion
Our exploration into the utilization of GPT models for 
medical coding reveals several noteworthy challenges. 
This underscores the importance of carefully crafted 
prompts to ensure reliable and consistent results. The 
second challenge is the non-deterministic nature of 
generative LLMs. Identical prompts applied to differ-
ent diseases generate stylistically different outputs, and 
depending on the prompting strategy, these lead to com-
pletely hallucinated responses. We included the screen-
shots of the GPT inaccuracies and hallucinations in the 
Supplementary Material section. Our findings show 

some promising results for certain phenotypes but not 
all. LLMs tend to perform well for phenotypes that are 
well-documented, particularly those that have clear, 
standardized definitions and are extensively represented 
in the training data of these models. Well-documented 
phenotypes usually have a consistent set of codes, logi-
cal criteria, and textual descriptions that LLMs can more 
easily recognize and replicate. For example, phenotypes 
such as “Diabetes Mellitus (Type 2), Acute Myocardial 
Infarction (AMI)” are well-documented with clear clini-
cal criteria and extensive coding in systems like ICD and 
SNOMED. Table  6 presents the hallucinations of the 
GPT model. One of the bigger dangers here is the gen-
eration of hallucinations when asking for specific coding 
systems to standardize the definitions. While this could 
be easily overcome by using knowledge graphs [19], some 
codes are completely fabricated and will never map to 
anything, as recently shown by Soroush et al. [20].

6  Future work
The next phase of this work will involve actually using 
the extracted phenotype definitions by the GPT mod-
els and comparing the patient cohorts they select. We 
will use tools available within the OHDSI community, 
such as Cohort Diagnostics [21] and PheValuator [22], 
to observe if these definitions are even close to human 
generated definitions. Our hypothesis here is that since 
the LLM identifies the most commonly used codes, and 
logic, for these definitions, it should do a decent job in 
identifying the core of the phenotype cohort, without 
including additional edge cases, thus not leaving too 
many patients out. Success will be measured by the 

Table 4 Comparisons of GPT hallucinations when producing 
codes

Model Average % Minimum % Maximum %

GPT 3.5 38 0 83

GPT 4 32 0 69

Table 5 Code mapping evaluation of GPT models, comparing 
codes as extracted vs mapped by the LLM

Model Metric Average % Minimum % Maximum %

GPT 4 Extracted codes 
overlap

50.94 20.00 89.00

Mapped codes 
overlap

72.89 28.98 97.00

GPT 3.5 Extracted codes 
overlap

27.51 10.00 85.20

Mapped codes 
overlap

58.15 19.87 62.20

Table 6 Hallucinations of GPT 3.5 and 4

Model Vocab Logic Code String

GPT 3.5 ICD-10 Exclusion Z91.010 Allergy to nuts

GPT 4 ICD-10 Inclusion Z91.010 History of peanut allergy



Page 5 of 6Tekumalla and Banda  Genomics & Informatics           (2024) 22:21  

similarity between these cohorts if they closely align; 
it signifies a significant achievement. Conversely, sub-
stantial differences would indicate a need for further 
refinement of the models, highlighting the iterative 
nature of improving LLM applications in healthcare. 
This rigorous evaluation process is essential for advanc-
ing our understanding and application of AI in enhanc-
ing medical research and patient care.

7  Conclusions
Our exploration into utilizing LLMs for automating 
phenotype definition extraction presents a promis-
ing avenue for enhancing the scalability and efficiency 
of phenotyping in digital healthcare. While our results 
underscore the potential of LLMs, particularly GPT-3.5 
and GPT-4, in generating medically relevant codes, they 
also highlight the challenges of consistency in textual 
output and the occurrence of inaccuracies. The criti-
cal insight from our study is the importance of devel-
oping robust evaluation and validation frameworks to 
ensure the reliability of LLM outputs. The findings indi-
cate that despite the hallucinations and inconsistencies, 
GPT models hold potential value as an initial step or 
augmentation tool in the phenotyping process which 
could significantly streamline and enhance electronic 
phenotyping methodologies.
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