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Abstract 

In protein identification, researchers increasingly aim to achieve efficient classification using fewer features. While 
many feature selection methods effectively reduce the number of model features, they often cause information 
loss caused by merely selecting or discarding features, which limits classifier performance. To address this issue, we 
present Rore, an algorithm based on a feature-dimensionality reduction strategy. By mapping the original features 
to a latent space, Rore retains all relevant feature information while using fewer representations of the latent features. 
This approach significantly preserves the original information and overcomes the information loss problem associated 
with previous feature selection. Through extensive experimental validation and analysis, Rore demonstrated excellent 
performance on an antioxidant protein dataset, achieving an accuracy of 95.88% and MCC of 91.78%, using vectors 
including only 15 features. The Rore algorithm is available online at http:// 112. 124. 26. 17: 8021/ Rore.
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1 Introduction
Antioxidant proteins produced by the human body can 
resist free radical damage. Identifying which human pro-
teins are antioxidant can help prevent diseases such as 
cancer and cardiovascular disease [1–4]. For this purpose, 

machine learning models can be used. Model’s fewer fea-
tures can improve the interpretability of the model and 
help researchers understand the underlying biological 
mechanisms [5–13]. Antioxidant protein identification 
based on machine learning has been performed in the 
past [14–17]. In 2016, Feng et al. developed the AodPred 
model based on optimal 3-gap dipeptides for feature 
selection to obtain 158-dimensional features for classifi-
cation [18]. In 2020, Chun et  al. identified 9808-dimen-
sional hybrid features using 188D, N-gram, ACC-PSSM, 
and g-gap. The authors performed feature selection using 
MRMD, t-SNE, and optimal feature set selection meth-
ods and classified the resulting feature vectors using the 
random forest algorithm [19]. In 2023, Chao et  al. used 
MRMD and dynamic programming to select of 473D 
feature vectors and to obtain 17-dimensional feature 
vectors for classification [20]. In general, the methods 
used in these studies use feature selection to reduce the 
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antioxidant protein dimensions, which inevitably leads 
to information loss. Most importantly, potential rela-
tionships between the features are ignored, limiting the 
performance of the classifiers. In addition, unbalanced 
datasets for antioxidant protein identification lead to low 
MCC values, which indicates poor model performance 
in predicting a small number of classes [21–24]. Notably, 
in clinical applications, misdiagnoses caused by targeting 
only few classes may have fatal consequences [25–29]. To 
address this problem, we propose the Rore model, which 
achieves superior MCC values based on a feature dimen-
sionality reduction algorithm and also preserves the 
original information and relationships between the fea-
tures. The usage of a SMOTE algorithm that rebalances 
the dataset. Specifically, the Rore model was found to 
achieve 95.88% accuracy and a 91.78% MCC value using 
only 15-dimensional features. Our findings demonstrated 
Rore shows significant performance with fewer features.

2  Methods
To address the problem of information loss, we developed 
a classification method based on a new feature-dimen-
sionality reduction strategy called Rore. For this pur-
pose, we first constructed an antioxidant protein dataset 
containing 3104 samples by screening and rebalancing 
data in the UniProt database using the SMOTE algo-
rithm. Subsequently, a 473-dimensional feature vector 
was extracted (Fig.  1). To reduce feature dimensionality 

and maximize the retention of the original feature infor-
mation, we propose a feature dimensionality reduction 
method, the variational feature compressor (VFC). This 
method is based on the idea of an information bot-
tleneck. Through VFC processing, we obtain a final 
15-dimensional feature vector. Finally, this 15-dimen-
sional feature vector was fed to the XGBoost algorithm 
for classification.

2.1  Benchmark dataset
We used the dataset collected in previous studies to 
allow a fair and comprehensive performance comparison 
with existing methods [18, 30, 31]. This dataset is unbal-
anced. The positive sample consists of sequences labeled 
as “antioxidant” from the UniProt database [32]. Samples 
containing “B,” “X,” “Z,” “O,” “U,” and “J” were eliminated 
due to uncertainty regarding their meanings [33], and 
only the sequences labeled “review” were retained for 
experimental validation. Negative samples were obtained 
from the PDB database using the PISCES procedure with 
an identification rate of no more than 20% (values less 
than 20%). The resulting dataset contained 1805 protein 
sequences, with 253 positive and 1552 negative samples.

Unbalanced datasets can lead to overfitting when train-
ing models. Thus, we rebalanced the dataset using the 
positive sample oversampling method, SMOTE [34], to 

Data = positive+ + negative−

Fig. 1 Overall structure of the Rore classifier. The Rore model is built in three steps: extracting 473-dimensional feature vectors from protein 
sequences, using the feature extraction method proposed by Wei, and selecting the most informative vectors among these according to the VFC 
feature dimensionality reduction method. Finally, the model is trained using the XGBoost algorithm
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obtain a 1:1 balanced dataset. The algorithm randomly 
selects a similarity point from the M similarity points 
closest to the sample point [35], and a new data point is 
generated through a linear link between the sample point 
and the randomly selected similarity point. After pro-
cessing using the SMOTE algorithm, a dataset containing 
3104 samples was obtained.

2.2  Feature extraction
We used the feature extraction method proposed by 
Wei et  al. [36]. This method uses PSI-BLAST [37] and 
PSI-PRED [38] algorithms to extract features. These two 
algorithms obtain feature information from the sequence 
and structural points of view [39–41]. We reasoned that 
the complementarity of these two types of features can 
improve the prediction accuracy. The specific steps were 
as follows:

The PSI-BLAST algorithm was first used to obtain a 
position-specific score matrix. Twenty feature vectors are 
obtained from the job-specific score matrix. The posi-
tion-specific score matrix can be expressed as follows:

where the score for mutation of residues at position i in 
the protein sequence S to j-type residues is denoted as 
psei,j . The 20 feature vectors to be extracted were the 
mean values Dpssm of the mutated residues based on the 
20 different types of mutated residues obtained during 
the evolutionary process [42], and Dpssm can be denoted 
as follows:

where Aj denotes the mean value of the mutations occur-
ring in the jth residue type during evolution.

In order to extract features from sequences containing 
richer evolutionary information, it is first necessary to 
transform each Ai,j into a consensus sequence Ai,j′ with 
the following transformation formula:

where BFj is obtained by dividing the number of amino 
acids by the number of sequences for all sequences in 
the PDB25 database [43]. Then, only a maximum value 
remains each row, and the new sequence Acon obtained 
is the consensus sequence containing evolutionary 
information.

Spssm =

pse1,1 · · · pse1,20
pse2,1 · · · pse2,20

...
. . .

...
pse20,1 · · · pse20,20

Dpssm =

{
Aj =

1

L

L∑

i=1

Aij; 1 ≤ j ≤ 20

}

Aij′ = 2Aij×BFj

Next, 20 and 400 features were extracted from the con-
sensus sequence using 1-g and 2-g algorithms, respec-
tively [44]. The feature extraction using the 1-g and 2-g 
algorithms can be formulated as follows:

where Pi denotes the residue i, O(Pi) is the frequency of 
occurrence of the residue, and O

(
PiPj

)
 denotes the fre-

quency of occurrence of residue pairs. Using a weighted 
combination of the 1-g and 2-g algorithms [45, 46], 420 
features Dcon were obtained, which can be denoted as 
follows:

PSI-PRED algorithm allows obtaining sequences 
and matrices of information about the structure 
from which features can be extracted, with 6 fea-
tures for the former and 27 features for the latter. 
Where the secondary structure sequence is noted as 
Astr = S1S2S3 · · · SL(S ∈ {H ,E,C}) , H, E, and C denote 
the three states. The six features extracted from the 
sequence of relevant structural information obtained 
using the PSI-PRED algorithm were as follows:

where totalH , totalE , and totalC are the sums of Astr in 
three states and IH , IE , and IC are the location indices of 
the three states. maxE and maxH represent the maximum 
continuous lengths of the two states in space. DME and 
DMH are the normalized maximum lengths. Replacing 
consecutive helices in the secondary structure sequence 

D1−gram =
{
O(Pi)

L
; 1 ≤ i ≤ 20

}

D2−gram =

{
O
(
PiPj

)

L
; 1 ≤ i ≤ 20,1 ≤ j ≤ 20

}

Dcon =
{
20D1−gram

420
,
400D2−gram

420

}

DH =
∑totalH

i=1 IHi

L(L− 1)

DE =
∑totalE

i=1 IEi
L(L− 1)

DC =
∑totalC

i=1 ICi

L(L− 1)

DME =
maxE

L

DMH =
maxH

L
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with α and consecutive strands with β, ignoring coiled 
coils, results in a set of fragment sequences consisting of 
α and β. Based on the difference in the α and β arrange-
ment in α/β proteins and α + β proteins, the two proteins 
can be distinguished by the following features:

where totalβαβ is the total number of occurrences of βαβ 
segments in the segmentation sequence Astr.

From the structural correlation matrix, we have extracted 
27 global structural features. Local structural features were 
extracted from the structural correlation matrix. Matrix 
consists of L rows and three columns, with each column 
representing the three states. The structural probability 
matrix SPMpro can be expressed as follows:

where pi,C pi,H pi,E are the probabilities of states C, H, 
and E, respectively. L is the size of the protein sequence. 
Based on the structure probability matrix, 3 and 24 fea-
tures can be obtained from the global and local perspec-
tives, respectively, where the global structural features 
can be denoted as follows:

The local structural features were obtained by divid-
ing the structural correlation matrix obtained according 
to the PSI-PRED algorithm into eight submatrices by row, 
and each submatrix consisted of three columns. The com-
putation of the features for each submatrix is consistent 
with the computation of the global structural features. We 
obtained the following eight local structural features:

where Dlocal_iC ,Dlocal_iH ,Dlocal_iE denote the probabili-
ties of the submatrix in the three states; that is, 24 local 
structural features are obtained from the structural prob-
ability matrix.

Dαβα =
totalαβα

L− 2

SPMpro =





p1,C p1,H p1,E
p2,C p2,H p2,E
...

...
...

pL,C pL,H pL,E





Dglobal_C =
1

L

L∑

i=1

pi,C

Dglobal_H =
1

L

L∑

i=1

pi,H

Dglobal_E =
1

L

L∑

i=1

pi,E

Dlocal =

{
Dlocal_1C ,Dlocal_1H ,Dlocal_1E , · · · ,Dlocal_8CDlocal_8HDlocal_8E

}

In conclusion, the PSI-BLAST algorithm obtained 440 
features, including 20 features, using a location-specific 
score matrix, and 420 features based on a weighted com-
bination of 1-g and 2-g algorithms. In addition, PSI-PRED 
extracted 33 features, including 6 features based on the sec-
ondary structure sequence and 3 and 24 features based on 
the structural probability matrix from global and local per-
spectives, respectively. The total number of features was set 
to 473.

In conclusion, the PSI-BLAST algorithm obtained alto-
gether 440 features, including 20 features by means of a 
location-specific score matrix and 420 features based on a 
weighted combination of 1-g and 2-g algorithms. In addi-
tion, PSI-PRED extracted 33 features, including 6 features 
based on the secondary structure sequence, and 3 features 
and 24 features based on the structural probability matrix 
from global and local perspectives, respectively. The total 
number of features is 473.

2.3  Variational feature compressor
To make the variational information bottleneck [47] (VIB) 
available for improved feature dimensionality reduction, 
we propose a variational feature compressor (VFC). In 
order to extract from the 473D feature vectors all possible 
representations of nonlinear interaction effects between 
features, it is necessary to convert the 473D feature vectors 
into more compact nonlinear latent variables [48]. The con-
version process can be represented as follows:

where F473D denotes the 473D feature vector obtained 
from 473D feature extraction [36], dense denotes the 
fully connected layer, and RELU is the activation function 
that captures the key to nonlinear relationships.

We then adopted the idea of an information bottleneck 
to reduce feature dimensionality. Specifically, the goal of 
the idea is to compress the input-redundant features R to 
obtain the potential variable P that can maximally repre-
sent its category C, that is, minimize the mutual informa-
tion M(R,P) and maximize the mutual information M(C,P) 
[49]. Based on the information bottleneck theory, the above 
process can be regarded as a maximization problem with 
the following formula:

where � is the Lagrangian quantity and M denotes the 
mutual information operation between two variables. 
The mutual information is calculated as follows:

Fpotential = RELU(Dense(F473D))

max
p(p|r)

M(C ,P)− �M(R,P)

M(R, P) =
∫

q(r, p)
(
log q(r, p)− log q(r)− log q(p)

)
dr dp
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Because q(c|p) and q(p) are not computable and the Kull-
back–Leibler scatter is positive, the above equation can be 
approximated using a variational approximation as follows:

Thus, M(C,P) can be approximated as follows:

where G(C) is irrelevant to the optimization objective and can 
be ignored. Furthermore, M(C,P) can be expressed using the 
Markov chain and edge probability density formula as follows:

Similarly, M(R,P) can be expressed as follows:

Combining the boundaries of M(C,P) and M(R,P) can 
be expressed as follows:

L is the lower bound, and the optimization objective 
can be approximated as follows:

We estimated the gradient of the lower bound L using the 
reparameterization technique and calculated it as follows:

where E(r) is the mean of r, D(r) is the variance of r, and is 
an auxiliary noise variable and follows a standard normal 
distribution.

KL[q(c|p), t(c|p)] ≥ 0

∫
q(c|p)log q(c|p) dc ≥

∫
q(c|p) log t(c|p) dc

M(C, P) ≥
∫

q(c, p)
(
log (c|p)− log q(c)

)
dc dp

=
∫

q(c, p) log t(c|p) dc dp−
∫

q(c) log q(c) dc

=
∫

q(c, p) log t(c|p) dc dp+ G(C)

M(C, P) ≥
∫

q(r)q(c|r)q(p|r) log t(c|p)dr dc dp

M(R, P) ≤
∫

q(r)q(p|r)
(
log q(p|r)− s(p)

)
dr dp

M(C ,P)− �M(R,P) ≥ L

L ≈
1

K

K∑

i=1

[
dz q(p|ri) log t(ci|p)− �q(p|ri) log

q(p|ri)
s(p)

]

z = E(r)+ εD(r)

Because the VFC is random in terms of weight ini-
tialization and sampling, the feature set processed by 
the algorithm exhibits a certain degree of randomness. 
Therefore, we simultaneously generated multiple features 
with the same dimensions. After several rounds of valida-
tion, the feature set with the highest MCC value and the 
smallest possible number of feature dimensions was the 
final feature set. Finally, we obtained a final feature set 
containing 15 features.

2.4  Classification method
Since Chen first proposed the XGBoost algorithm in 
2017 [50], it has received considerable attention as 
an integrated learning algorithm based on gradient 
enhancement [51–54]. XGBoost accumulates the predic-
tions of the k-tree by weighting at each iteration step and 
uses the information of the first-order derivative from the 
loss function to adjust the model and optimize the final 
prediction of the model using the following formula:

where qk(xi) is the prediction model for the kth tree, w 
is the leaf weight, xi is the characteristics of the sample, 
and y is the algorithm’s prediction result. Given an input, 
it will be determined the leaf node to which it belongs 
is based on the branching condition (denoted as q) of 
the tree structure species. The prediction is obtained by 
accumulating the scores (denoted as w) of all the leaf 
nodes through which this input passes. For the algorithm 
to learn the sample information better, the objective 
function can be expressed as follows:

where ℓ is used to measure the difference between the 
algorithm’s prediction and the actual labels. Ω is the reg-
ularization term, consisting of the leaf node count and 
leaf weights. The parameter in the regularization term 
controls leaf number, and the parameter controls leaf 
weights.

2.5  Evaluation metrics
The k-fold cross-validation assessment model was pre-
viously found to yield more objective assessment results 
[55–59] and was used in this study as well. This method 
splits the dataset equally into k-folds, selecting onefold at 
a time as the validation set and the rest of the folds as the 
training set, and repeating this k times. The averages of 

φ(xi) =
K∑

k=1

fk(xi) =
K∑

k=1

ωqk(xi)

obj(θ) =
n∑

i=1

ℓ
(
yi, ŷ1

)
+

K∑

k=1

�(tk) =
n∑

i=1

ℓ
(
yi, ŷ1

)
+ γT +

1

2
� � ω �2
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the evaluations were used as the cross-validation results. 
To demonstrate that the model performs better on both 
positive and negative samples, we used the following rel-
evant formulas as evaluation metrics:

where TP represents the amount of data categorizing 
antioxidant proteins as antioxidant proteins, FP repre-
sents the amount of data categorizing nonantioxidant 
proteins as antioxidant proteins, TN represents the 
amount of data categorizing nonantioxidant proteins as 
nonantioxidant proteins, and FN represents the amount 
of data categorizing antioxidant proteins as nonanti-
oxidant proteins. The Matthews correlation coefficient 
(MCC) represents the ability of the model to balance the 
predictive accuracy of positive and negative samples [48].

3  Results and discussion
3.1  Algorithm overview
To assess the performance of the dimensionality reduction 
algorithm, we first plotted sample distributions before and 
after dimensionality reduction. Owing to the clear descrip-
tion of feature contributions in DP-AOPs, we refer to the 
table provided and visualize these features for comparison. 

ACC =
TN + TP

TN + FP + FN + TP

SN =
TP

TP + FN

SP =
TN

TN + FP

MCC =
TN× TP− FN× FP

√
(TN + FP)× (FN + TP)× (TN + FN)× (TP+ FP)

F1score =
2TP

2TP + FP + FN

For a fair assessment, we chose the same number of features 
as the number of feature dimensions we adopted, i.e., the 
first 15 features, based on the contribution of the features 
in the DP-AOPs table from highest to lowest. Data points 
before dimensionality reduction were found to be highly 
interconnected (Fig. 2a), with the red and blue data points 
appearing particularly overlapping each other in some areas. 
In addition, the decision boundary was found to be complex 
and irregular, hindering the capture of useful information. 
In Fig.  2b, the classification boundaries between the red 
and blue data points are relatively more clear, with several 
regions densely populated with a single category, yet some 
regions appeared to contain both types. Upon dimensional-

ity reduction, the separation between the red and blue data 
points in some regions was improved compared to the orig-
inal features and DP-AOPs. In addition, the decision bound-
ary line separated the two types of data points. In summary, 
we conclude that the low-dimensional features obtained by 
the VFC dimensionality reduction method enable a more 
generalized and efficient classification.

Although the main idea behind VFC feature dimen-
sionality reduction is to transform and combine the orig-
inal features nonlinearly in the latent space, the method 
still has a preference for certain features. Thus, to some 
extent, certain features and their potential relationships 
are more important to identify antioxidant proteins. In 
addition, the source of the features after dimensionality 
reduction may reveal their biological significance. We 
determined the importance of the original features and 
the relationship between the features before and after 
dimensionality reduction using the SHAP method. First, 
the SHAP values between the original feature vector 
and 15-dimensional feature vector were calculated for 
all samples. The SHAP values of all samples were then 

Fig. 2 Sample distribution visualization of the feature set obtained based on different algorithms. a Sample distribution visualization of the feature 
set using the original 473D feature set, b sample distribution visualization of the 17-dimensional enlistment used in DP-AOP, and c sample 
distribution visualization of the 15-dimensional enlistment obtained based on the dimensionality reduction of the VFC features. Red dots represent 
positive samples, and blue dots represent negative samples in the figure
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averaged to obtain absolute values. To obtain the main 
components of the dimensionality reduction feature, we 
sorted the SHAP values of the 473-dimensional features 
corresponding to each dimensionality reduction feature 
in descending order, and thus obtained the features in 
descending order of importance. Considering the large 
number of features, we chose features with SHAP values 
greater than 0.012 as references.

The relationship between the original feature vector 
obtained based on the SHAP value and the dimension-
ality-reduction feature vector is shown in Fig.  3. The 
original features on the left side of the graph are listed in 
decreasing order of SHAP values, and the features on the 
right side are listed in order of feature name. Ten features 
were based on the structure probability matrix, and 26 
features were based on the consensus sequence, as shown 
in the figure. Additionally, the five features with the larg-
est SHAP values were based on a consensus sequence. 
Here, consensus sequences were found to play an essen-
tial role in predicting antioxidant proteins.

3.2  Performance evaluation based on k‑fold 
cross‑validation

To estimate the model performance more reliably, the 
k-fold cross-validation method was used to estimate 
model performance. Specifically, the antioxidant dataset 
was split into five equally sized subsets, and a different 
subset was selected as test data, whereas the remaining 
four were used for model training each time model per-
formance was evaluated. This process was repeated 
five times. This cross-validation process reduces acci-
dental errors by repeating it many times for different 

Fig. 3 Visualization of the relationship between the original and dimensionality reduction feature vectors obtained based on SHAP values. The 
original features on the left side of the figure are arranged in descending order based on SHAP values, and the features on the right side are 
arranged in the order of feature names

Table 1 Performance results and average performance results 
of the fivefold cross-validation method based on the benchmark 
dataset

Times ACC SN SP MCC F1

1 96.62 96.44 96.80 93.24 96.60

2 96.78 96.30 97.22 93.55 96.62

3 95.49 95.25 95.74 90.98 95.56

4 95.65 93.31 98.29 91.44 95.79

5 94.84 95.68 94.04 89.69 94.74

Average 95.88 95.40 96.42 91.78 95.86
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combinations of subsets, ultimately yielding more objec-
tive model evaluation results. For performance evalu-
ation, a benchmark dataset was constructed using the 
dataset developed by Feng et  al. (2016). Table  1 pre-
sents the performance results of the developed clas-
sifier on this dataset for five instances after fivefold  
cross-validation, as well as the average performance of the 
five instances. The results of the experiments objectively 
demonstrated the accuracy and generalization ability of the 
model, as well as its ability to classify antioxidant proteins.

3.3  Comparison of Rore classifier performance with those 
of other classifiers

We adopted the benchmark dataset used in the k-fold 
cross-validation method and tested the performances of 
the Rore model and the other five methods. As shown 
in Fig.  2, Fig.  4, and Table  2, Rore model outperforms 
all the other methods owing largely to retaining of the 
original information and discarding of noise. In clinical 
applications, the advantage in terms of the MCC values 
is significant, indicating that the classifier performs well 
on unbalanced datasets. In practice, more importance is 

given to MCC and ACC values. Therefore, we sacrificed 
SN, SP, and F1 scores within acceptable limits.

4  Conclusion
To overcome the limitations of feature selection in existing 
protein identification methods, a classifier based on fea-
ture dimensionality reduction was proposed in this study. 
By mapping the original features into the potential space to 
obtain a compressed representation with all feature infor-
mation, the problem of information loss caused by the pre-
vious use of feature selection is solved. Experimental results 
show that on the benchmark dataset, our classifier model 
outperforms other existing classifiers in three metrics, 
MCC, F1, and ACC, using only 15-dimensional features. 
A high MCC value indicates superiority when dealing with 
unbalanced datasets. It shows great potential in clinical 
applications. Therefore, we can conclude that the Rore clas-
sifier can obtain more robust features to achieve superior 
recognition ability. Given the excellent robustness of the 
Rore classifier, its application potential in other recognition 
areas may be investigated in future studies.

Fig. 4 Comparison of Rore’s performance with other models. a Comparison based on the dimension of the feature vectors used. b Comparison 
based on SN, SP, MCC, ACC, and F1 evaluation metrics

Table 2 Performance comparison of Rore with other classifiers

Model ACC SN SP MCC F1 Dimension

AodPred 74.79 75.09 74.48 36.8 45.2 158

Zhai 80 79.2 80.8 71.65 96.77 545

DP-AOP 91.08 96.4 85.8 82.6 91.5 17

PredAoDP 93.18 71.65 96.77 71.2 74.9 420

AOPs-SVM 94.2 68.5 98.5 74.1 76.7 176

Rore 95.88 95.4 96.42 91.78 95.86 15
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