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Abstract 

Neuromuscular diseases (NMDs) are a group of rare disorders characterized by significant genetic and clinical com-
plexity. Advances in genomics have revolutionized both the diagnosis and treatment of NMDs. While fewer than 30 
NMDs had known genetic causes before the 1990s, more than 600 have now been identified, largely due to the adop-
tion of next-generation sequencing (NGS) technologies such as whole-exome sequencing (WES) and whole-genome 
sequencing (WGS). These technologies have enabled more precise and earlier diagnoses, although the genetic 
complexity of many NMDs continues to pose challenges. Gene therapy has been a transformative breakthrough 
in the treatment of NMDs. In spinal muscular atrophy (SMA), therapies like nusinersen, onasemnogene abeparvovec, 
and risdiplam have dramatically improved patient outcomes. Similarly, Duchenne muscular dystrophy (DMD) has seen 
significant progress, most notably with the FDA approval of delandistrogene moxeparvovec, the first micro-dystro-
phin gene therapy. Despite these advancements, challenges remain, including the rarity of many NMDs, genetic 
heterogeneity, and the high costs associated with genomic technologies and therapies. Continued progress in gene 
therapy, RNA-based therapeutics, and personalized medicine holds promise for further breakthroughs in the manage-
ment of these debilitating diseases.
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1 � Background
Neuromuscular diseases (NMDs) have experienced sig-
nificant advancements in diagnosis and treatment, largely 
driven by breakthroughs in genomics. Before the 1990s, 
fewer than 30 NMDs had their molecular genetic causes 
identified [1]. Today, however, over 600 single-gene 
NMDs have been characterized, with new discoveries 
continuing to emerge each year [2]. In the past decade, 

gene therapy research has advanced at an unprecedented 
rate, leading to the development and approval of thera-
pies for previously untreatable diseases. This progress 
marks a fundamental shift in the management of NMDs.

2 � Genetic complexity in neuromuscular diseases
NMDs represent a group of rare disorders with significant 
clinical diversity and genetic complexity. These diseases 
are classified into various subgroups, including muscular 
dystrophies, congenital myopathies, distal myopathies, 
metabolic myopathies, myotonic syndromes, congenital 
myasthenic syndromes, motor neuron diseases, heredi-
tary motor and sensory neuropathies, and ion channel 
muscle diseases [2]. Each subgroup shares multiple caus-
ative genes, which means that different molecular genetic 
diagnoses can be derived from similar clinical symp-
toms, and the same gene may result in different pheno-
types. Since the initial application of next-generation 
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sequencing (NGS) in NMD patients in 2010 [3], this 
technology has revolutionized the field by enabling the 
efficient analysis of multiple genes simultaneously. NGS 
technologies, including whole-exome sequencing (WES) 
and whole-genome sequencing (WGS), have significantly 
accelerated the discovery of novel disease-causing genes 
in NMDs [4, 5]. These technologies have enabled more 
precise and earlier diagnoses, improving disease man-
agement and treatment planning. Targeted panel NGS or 
WES is now being adopted as a standard in clinical NMD 
diagnosis, while emerging tools like transcriptome analy-
sis and long-read sequencing further expand the field 
[6–8].

While NGS has greatly advanced the diagnosis of 
NMDs, the genetic complexity, particularly the diver-
sity of causal variants, continues to make accurate 
diagnosis challenging. For numerous major NMDs, 
molecular diagnosis remains infeasible with NGS. For 
example, Duchenne muscular dystrophy (DMD) shows 
genetic heterogeneity, with around 80% of patients hav-
ing exon deletions or duplications in the dystrophin 
gene, and about 20% presenting with sequence variants, 
including intronic mutations in 5%, which complicates 
diagnosis [9]. In spinal muscular atrophy (SMA), over 
95% of patients exhibit homozygous deletion of exon 7 in 
the SMN1 gene [10]. Myotonic dystrophy type 1 (DM1) 
is caused by the expansion of a CTG trinucleotide repeat 
in the noncoding region of the DMPK gene [11], while 
facioscapulohumeral muscular dystrophy type 1 (FSHD1) 
is characterized by the contraction of the D4Z4 repeat 
array on chromosome 4q35 [12]. Moreover, in meta-
bolic myopathies, mitochondrial DNA mutations are a 
critical diagnostic factor, often presenting as either single 

nucleotide variants or large deletions [13]. Additionally, 
certain genetic disorders, such as Fukuyama congenital 
muscular dystrophy, show genotypic differences across 
ethnicities, necessitating tailored diagnostic approaches 
[14, 15]. These examples underscore the genetic diver-
sity and complexity associated with NMDs, highlighting 
the challenges of achieving accurate molecular diagnosis 
even in the era of NGS technologies (Table 1).

3 � Gene therapy: a new era in NMD treatment
Advancements in genetics have also led to significant 
progress in the treatment of NMDs, with one of the 
most notable achievements being the development of 
gene therapies, which have substantially impacted the 
therapeutic landscape of these disorders. SMA is a prime 
example, with the antisense oligonucleotide (ASO) ther-
apy nusinersen (Spinraza) nearing its tenth year since 
its successful introduction [16, 17]. Following this, the 
development and clinical application of onasemno-
gene abeparvovec (Zolgensma), an adeno-associated 
virus (AAV)-based gene therapy [18, 19], and risdiplam 
(Evrysdi), a small molecule oral drug [20, 21], have ush-
ered in a new era of treatment options for SMA. All 
three SMA therapies have demonstrated significant effi-
cacy in altering the natural course of SMA, notably by 
prolonging ventilation-free survival and enabling the 
achievement of major motor milestones [16–21]. These 
treatments achieve optimal outcomes when administered 
at the earliest possible stage, ideally prior to symptom 
onset. Accordingly, we are now in an era emphasizing 
newborn screening [22], with the USA implementing 
SMA screening for all newborns as of January 2024. Sim-
ilarly, in DMD, exon-skipping therapies [23, 24] marked 

Table 1  Complexity of diagnostic genetic testing in major neuromuscular diseases

Phenotype Gene Molecular genetic testing methods Proportion of probands with a 
pathogenic variant detectable

Duchenne/Becker muscular dystrophy (DMD/
BMD)

DMD Sequence analysis 20–35%

Gene-targeted deletion/duplication analysis 65–80%

Spinal muscular atrophy (SMA) SMN1 Sequence analysis 2–5%

Gene-targeted deletion/duplication analysis 95–98%

Facioscapulohumeral muscular dystrophy 
(FSHD)

D4Z4 Targeted analysis for pathogenic variants 
(pathogenic contraction of number of D4Z4 
repeats)

 ~ 95%

Methylation analysis  ~ 5%

Myotonic dystrophy type 1 (DM1) DMPK Targeted analysis for pathogenic variants (test-
ing to quantitate the number of DMPK CTG 
trinucleotide repeats)

100%

Fukuyama congenital muscular dystrophy FKTN Targeted analysis Japanese Non-Japanese Asian Non-Asian

c.*4392_*4393insAB185332.1 98% 3 77% 4, 5 0%

c.647 + 2084G > A 8% 38% (Korean) 0%

c.139C > T 7% 60% (Chinese) Rare
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a major advancement, and more recently, the FDA 
approval of delandistrogene moxeparvovec (Elevidys), 
the first micro-dystrophin gene therapy [25], represents 
another significant milestone (Table 2). With more gene 
therapies under development and clinical trials actively 
ongoing, the future of NMD treatment holds great prom-
ise for further breakthroughs.

4 � Challenges and future directions
Despite the progress in the field, there remain several 
challenges and limitations. One of the main obstacles 
is the clinical rarity of many NMDs, making large-scale 
clinical trials difficult to conduct. The heterogeneity in 
disease presentation and progression further compli-
cates the development of universal treatments. Moreo-
ver, the genetic complexity of NMDs, with its diverse 
range of mutations and variable phenotypes, presents 
challenges in both diagnosis and treatment. In many 
cases, the specific mutation causing the disease may still 
be unknown, and even when the mutation is identified, 
developing effective therapies can be difficult due to the 
multifaceted nature of the underlying pathophysiology. 
Another major limitation is the cost and accessibility of 
advanced genomic technologies and therapies. Gene 
therapies, while promising, are often expensive and not 
readily available in all regions, limiting their impact on 
the broader patient population. Ensuring equitable access 
to these treatments remains a critical challenge for the 
future. The future of neuromuscular disease research and 
treatment lies in continued advancements in gene ther-
apy and RNA-based therapeutics.

5 � Conclusions
Neuromuscular diseases represent a group of rare yet 
complex disorders that have benefited significantly from 
advancements in genomics. The identification of over 600 
disease-causing genes, coupled with the development of 
gene therapies, has brought hope to patients suffering 

from previously untreatable conditions. However, chal-
lenges such as genetic heterogeneity, clinical rarity, and 
accessibility to treatments remain. The future of NMD 
research promises continued innovation, with gene edit-
ing, RNA-based therapies, and personalized medicine 
leading the way towards more effective and equitable 
treatments for these debilitating diseases.
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