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Common genetic etiologies of sensorineural 
hearing loss in Koreans
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Abstract 

Hearing loss is the most common sensory disorder. Genetic factors contribute substantially to this condition, 
although allelic heterogeneity and variable expressivity make a definite molecular diagnosis challenging. To provide 
a brief overview of the genomic landscape of sensorineural hearing loss in Koreans, this article reviews the genetic 
etiologies of nonsyndromic hearing loss in Koreans as well as the clinical characteristics, genotype–phenotype cor-
relations, and pathogenesis of hearing loss arising from common variants observed in this population. Furthermore, 
potential genetic factors associated with age-related hearing loss, identified through genome-wide association stud-
ies, are briefly discussed. Understanding these genetic etiologies is crucial for advancing precise molecular diagnoses 
and developing targeted therapeutic interventions for hearing loss.
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1 Introduction
The auditory system is a fundamental component of 
human perception that plays multifaceted and essen-
tial roles in daily life. Through the sense of hearing, 
humans can locate the origins of sounds and differenti-
ate stimuli. The most remarkable aspect of the auditory 
system, however, is the ability that the human lineage has 
developed to make sense out of sound. Humans convert 
sound into highly meaningful representations through 
language, making the status of hearing unique among the 
senses  [1]. Hearing is essential for communication and 
normal life in humans.

Hearing loss (HL) is one of the most common sensory 
disorders, with an incidence of 1 in 500–1000 in new-
borns imposing a substantial economic burden. Among 
the various etiologies of HL, genetic factors are responsi-
ble for at least half of the congenital cases, and within this 
subset, more than two-thirds are classified as nonsyndro-
mic hearing loss (NSHL), which refers to isolated hear-
ing loss without the involvement of other organs [2]. To 
date, more than 150 mutated genes have been identified 
to cause deafness. Among these genes, 63 are inherited 
in an autosomal dominant (AD) pattern, whereas 86 are 
transmitted in an autosomal recessive (AR) inheritance 
pattern (up-to-date overview of the genetic etiologies of 
hereditary hearing impairment is available on hereditary 
hearing loss homepage: https:// hered itary heari ngloss. 
org/).

HL can be classified as pre-lingual or post-lingual, 
depending on the time of onset. Pre-lingual HL starts 
before speech development, whereas post-lingual HL 
emerges after the development of speech. An exam-
ple of post-lingual HL is age-related hearing loss 
(ARHL), which affects approximately one-third of adults 
aged > 65  years  [3–5]. Most deafness-causing genes 
inherited in an AR pattern commonly lead to congenital 
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or pre-lingual HL, whereas those inherited in an AD pat-
tern tend to induce post-lingual HL. Furthermore, the 
genetic etiologies of pre-lingual and post-lingual HL are 
considerably different, indicating that clarification of 
the genomic landscape of both types of HL is clinically 
important for precise molecular diagnosis.

In this review, we summarize the common genetic eti-
ologies of NSHL in Koreans and the underlying mecha-
nisms contributing to either autosomal recessive or 
autosomal dominant NSHL. The contribution of genetic 
factors to age-related hearing loss (ARHL) is also briefly 
discussed.

2  Autosomal recessive NSHL in the Korean 
population

GJB2 and SLC26A4 are the most common causative genes 
of congenital or pre-lingual HL in East Asian popula-
tions [6–9]. Consistent with this, SLC26A4 was identified 
as the most prevalent deafness-causing gene, accounting 
for approximately 20% of prelingual-onset NSHL cases, 
followed by GJB2, in a cohort of Korean patients with 
hearing loss  [10]. Here, we comprehensively reviewed 
the clinical characteristics of GJB2 and SLC26A4-related 
hearing loss, in addition to the physiological functions 
and pathogenesis of HL caused by mutations in these 
genes.

2.1  GJB2
Gap junction protein 26 (connexin 26; CX26), which is 
expressed in non-sensory cells of the cochlea (Fig.  1), 
is encoded by the GJB2 gene [11, 12]. CX26, along with 
connexin 30 (CX30), is one of the most abundantly 
expressed gap junction proteins in the inner ear and co-
assembles to form heteromeric and heterotypic chan-
nels in cochlear gap junction plaques (GJPs) [11, 13, 14]. 

Most mutations in the GJB2 gene cause autosomal reces-
sive deafness 1 (DFNB1), a leading form of NSHL  [11], 
whereas a few mutations in the GJB2 gene have also 
been reported to cause autosomal dominant deafness 3 
(DFNA3) [15, 16]. This review focuses on the phenotypes 
and pathogenesis of DFNB1.

The degree of hearing loss in DFNB1 patients var-
ies widely, ranging from profound deafness at birth to 
mild, progressive HL in late childhood [17, 18]. The audi-
tory phenotype is highly dependent on the specific GJB2 
mutation  [17, 19]. Patients with bi-allelic truncating 
mutations typically experience substantially more severe 
HL than those with bi-allelic nontruncating mutations. 
Several mutations, including p.M34T, p.V37I, and p.L90P, 
are associated with mild-to-moderate HL, whereas the 
c.35delG mutation often results in severe hearing impair-
ment [11, 19, 20].

A study involving the genetic screening of 2072 new-
borns with normal hearing revealed that the carrier fre-
quency of GJB2 pathogenic mutations (p.V37I, p.G45E, 
p.R143W, c.176_191del, c.235delC, c.292_298dup, 
c.299_300delAT, and c.605ins46) was 3%, which cor-
responds to an allele frequency of 1.49%, in the Korean 
population  [21]. Among the pathogenic variants iden-
tified in that study  [21], the p.V37I (allele frequency, 
0.68%) and c.235delC (0.63%) mutations were the most 
prevalent (Table  1), which is consistent with their high 
frequency in East Asians  [17]. The p.V37I mutation, the 
most common GJB2 mutation in the Korean popula-
tion, is a missense allele associated with mild HL, which 
progresses steadily [19–22]. The c.235delC is the second 
most common mutation, resulting in the premature ter-
mination of translation and production of a truncated 
protein  [21, 23]. Although the c.235delC mutation is 
commonly associated with severe-to-profound HL, the 

Fig. 1 Schematic illustration of inner ear structure. Cell types expressing common deafness-causative genes found in Koreans are indicated
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hearing phenotype varies, with a considerable number of 
patients exhibiting asymmetric HL [23].

Intracellular gap junction channels (GJCs) formed by 
CX26 and CX30 are involved in recycling potassium ions 
 (K+) and exchanging small molecules, such as glucose, 
second messengers, adenosine triphosphate (ATP), and 
miRNAs in the cochlea [11, 13, 14]. GJCs also play a cru-
cial role in energy supply to the cochlear sensory epithe-
lium and inner ear calcium ion signaling, facilitating the 
diffusion of inositol 1,4,5-triphosphate, a  Ca2+-mobilizing 
secondary messenger  [11, 27–30]. As the function of 
GJCs is essential for  K+ recycling within the inner ear, 
mutations in the GJB2 gene result in a drastically reduced 
GJP area, eventually leading to diminished endocochlear 
potential within the scala media, which is considered the 
main pathogenic mechanism underlying GJB2-related 
HL  [13, 14, 31–33]. However, recent studies have sug-
gested that impaired  K+ circulation is not the sole patho-
logical mechanism underlying GJB2-related HL [34, 35]. 
Whereas the mechanism of HL caused by GJB2 muta-
tions remains unclear, malformation of the organ of 
Corti is considered a contributing factor to HL  [13]. In 
mouse models with CX26 abnormalities, researchers 
observed the impaired opening of the tunnel of Corti 
(TC) and Nuel’s space (NS) [36, 37]. Unopened TCs and 
an abnormal NS have also been reported in GJB2 carri-
ers [13]. Given that the opening of the TC and the forma-
tion of NS are important for hearing acquisition and that 

impaired development of the organ of Corti potentially 
causes severe HL, these observations provide insight into 
the pathogenesis of GJB2-related HL [13, 38].

2.2  SLC26A4
The SLC26A4 gene encodes the pendrin protein, a non-
specific anion exchanger  [39]. Pendrin is expressed in 
restricted tissues and is present in the inner ear, kidneys, 
and thyroid [40]. SLC26A4 is the causative gene of non-
syndromic autosomal recessive hearing loss, DFNB4, 
which is associated with an enlarged vestibular aqueduct 
(EVA)  [39]. Mutations in SLC26A4 occasionally cause 
Pendred syndrome, a syndromic hearing loss accom-
panied by goiter and hypothyroidism [41, 42]. Thus, the 
SLC26A4 gene serves as a common genetic denominator 
in both syndromic and nonsyndromic HL. In this review, 
SLC26A4-associated HL refers to DFNB4 and Pendred 
syndromes.
SLC26A4-associated HL manifests as fluctuating and 

progressive sensorineural hearing loss with a variable 
range of inner ear malformations [43], such as EVA and 
incomplete partition type II (IP-II)  [39]. EVA is a hall-
mark feature of SLC26A4-associated HL and is observed 
either unilaterally or bilaterally  [39, 43]. Other clinical 
manifestations include vestibular dysfunction presenting 
as episodic rotatory vertigo [39, 44].

Although the pathogenic link between endolym-
phatic sac dysfunction and HL remains unclear, EVA in 

Table 1 Common genetic variants for autosomal recessive and autosomal dominant sensorineural hearing loss in Koreans

a KOVA.v2 (Korean Variant Archive for a reference database of genetic variations in the Korean population; https:// kobic. re. kr/ kova/)
b Common variants of COCH gene in Koreans have been identified based on reports from multiple independent studies [4, 24–26]

rsID number Chromosome
Position (hg38)

Reference 
Allele

Alternate 
Allele

Gene Coding change Consequence Korean  AFa Inheritance

rs72474224 chr13:20189473 C T GJB2 NM_004004.6; 
c.109G > A; p.Val37Ile

Missense 0.009495 Autosomal recessive
(DFNB1A)

rs80338943 chr13:20189346 AG A GJB2 NM_004004.6; 
c.235delG; 
p.Leu79Cysfs*3

Frameshift 0.005600

rs111033313 chr7:107683453 A G SLC26A4 NM_000441.2; c.919-
2A > G

Splicing acceptor 0.001062 Autosomal recessive 
(DFNB4)

rs111033220 chr7:107690203 C T SLC26A4 NM_000441.2; 
c.1229C > T; 
p.Thr410Met

Missense 0.000380

rs121908362 chr7:107710132 A G SLC26A4 NM_00441.2; 
c.2168A > G; 
p.His723Arg

Missense 0.004730

rs1271250198 chr1:40784233 T C KCNQ4 NM_004700.4; 
c.140 T > C; p.Leu47Pro

Missense 0.003860 Autosomal dominant 
(DFNA2)

- chr14:30877602 G A COCHb NM_004086.3; 
c.113G > A; p.Gly38Asp

Missense - Autosomal dominant 
(DFNA9)

rs924049830 chr14:30878911 C T COCHb NM_004086.3; 
c.340C > T; 
p.Leu114Phe

Missense -

https://kobic.re.kr/kova/
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SLC26A4-associated HL is likely attributable to impaired 
endolymph absorption in the endolymphatic sac during 
inner ear development  [39, 45]. Pendrin is expressed in 
the apical membrane of the spiral prominence and outer 
sulcus in the cochlea, transition cells of the vestibu-
lar organs, and mitochondria-rich cells (MRCs) of the 
endolymphatic sac in the murine inner ear (Fig.  1)  [39, 
46]. MRCs, comprising approximately 30% of endolym-
phatic epithelial cells, express numerous ion transport 
genes, including SLC26A4. Disruption of the regulation 
of endolymph absorption during inner ear development 
via MRCs is considered the underlying mechanism of 
EVA [45]. Given that SLC26A4 is mainly expressed in the 
endolymphatic sac and spiral prominence, but not in the 
organ of Corti, where mechano-electrical transduction 
and activation of the cochlear nerve occur, SLC26A4-
associated HL may be secondary to the dysfunction of 
the endolymphatic sac. Dysfunction of the endolym-
phatic sac results in the perturbation of the homeostatic 
maintenance of endolymphatic pH and scala media 
enlargement, which eventually leads to the degenera-
tion of the stria vascularis and hair cells in the organ of 
Corti [47–49].

Pendrin plays a critical role in the acquisition of nor-
mal hearing during certain periods of inner ear develop-
ment. A murine model showed that pendrin expression 
was required from embryonic day 16.5 (E16.5) to post-
natal day 2 (P2) for the development of normal hear-
ing  [50]. This time interval corresponds to the period 
during which rapid maturation of the inner ear occurs in 
mice [51, 52]. The precise temporal requirement of pen-
drin emphasizes that the therapeutic time window must 
be prudently set for the treatment of SLC26A4-associated 
HL.

In the Korean population, the prevalent SLC26A4 
mutations include p.H723R (allele frequency in Kore-
ans according to KOVA.v2  [53]: 0.473%), c.919-2A > G 
(0.1062%), and p.T410M (0.0380%) (Table  1)  [54]. The 
missense mutations, p.H723R and p.T410M, exhibit 
protein-folding defects, resulting in retention within the 
endoplasmic reticulum (ER), thus inhibiting the protein 
from reaching the plasma membrane [55, 56]. The c.919-
2A > G mutant is a splicing variant that causes skipping 
of exon 8, resulting in premature termination of transla-
tion [57]. Patients with SLC26A4 mutations often exhibit 
variable degrees of residual hearing and inner ear mal-
formations depending on the specific mutation they 
carry. In both p.H723R and p.T410M mutations, a por-
tion of the functional pendrin is expressed in the plasma 
membrane, with the p.T410M mutation demonstrating a 
higher surface expression ratio. This explains the better 
residual hearing experienced with p.T410M mutations 
than with p.H723R mutations. In c.919-2A > G mutants, 

the leaky 3′ original splice site allows for the production 
of normally spliced transcripts, which might be respon-
sible for better residual hearing in affected individuals. 
The ratio of accompanying inner ear malformations, 
specifically incomplete partition type II (IP-II), differs 
across genotypes, with more IP-II observed in p.H723R 
homozygotes than in other genotypes [54].

3  Autosomal dominant NSHL in the Korean 
population

For HL inherited in an autosomal dominant pattern, 
genetic etiologies are more heterogeneous than those for 
autosomal recessive NSHL, and the exact contribution 
of each gene responsible for autosomal dominant NSHL 
varies depending on ethnicity. However, among Korean 
patients with autosomal dominant NSHL, the most prev-
alent causative genes are KCNQ4 and COCH (Table  1). 
This review presents the clinical characteristics and phys-
iological functions of KCNQ4 and COCH, and the patho-
genic mechanisms of HL caused by these genes.

3.1  KCNQ4
KCNQ4 (Kv7.4) is a voltage-gated potassium channel 
encoded by the KCNQ4 gene that plays an important role 
in auditory function  [6]. Predominantly localized in the 
basolateral membrane of outer hair cells (OHCs) (Fig. 1), 
KCNQ4 causes nonsyndromic autosomal dominant hear-
ing loss (DFNA2) when mutated [58, 59]. In South Korea, 
approximately 4% of HL cases are caused by mutations in 
the KCNQ4 gene [6]. The KCNQ4 channel is involved in 
the formation of M-type potassium currents that repolar-
ize OHCs, reduce cell excitability, and regulate numerous 
physiological responses [60–62]. KCNQ4 is essential for 
recycling potassium ions, maintaining resting membrane 
potential, and ensuring osmotic equilibrium [60, 63].

The KCNQ4 protein consists of 695 amino acids and 
contains six transmembrane domains (S1–S6)  [64]. 
Among these are four voltage-sensor domains (S1–S4) 
and a P-loop region residing between the transmembrane 
domains S5 and S6, with both N- and C-termini located 
intracellularly  [60, 65]. The majority of DFNA2-causa-
tive KCNQ4 variants are clustered in the S5–S6 region, 
which surrounds the ion-permeating pore region  [60]. 
These variants affect channel activity and disrupt potas-
sium ion recycling in the inner ear [6]. Because KCNQ4 
channels form homo- or heteromeric assemblies of four 
pore-forming subunits, mutations in a single subunit can 
impair channel function, leading to dominant–negative 
suppression [60, 66].

The underlying mechanism of DFNA2 involves the 
progressive degeneration of OHCs due to cellular stress 
caused by chronic depolarization and the accumula-
tion of intracellular  Ca2+ [6, 67]. While HL in DFNA2 is 
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initially mild at low frequencies and moderate at high fre-
quencies at younger ages, HL progresses over time, with 
most individuals developing severe-to-profound high-
frequency HL by 70 years of age [66, 68]. This phenotype 
is recapitulated in various mouse models that exhibit 
progressive ski-sloping hearing loss with selective degen-
eration of OHCs, especially in the basal turn [67, 69–71]. 
Overall, these results suggest a critical functional role of 
KCNQ4 in the mammalian OHCs to maintain normal 
hearing.

The pathogenesis of HL caused by mutations in the 
KCNQ4 gene varies according to the genotype. Variants, 
such as p.L274H, p.L281S, p.G296S, and p.G435Afs*61, 
have been reported to reduce the surface expression of 
KCNQ4 proteins, leading to the accumulation of mutant 
proteins in the ER [6, 72]. Impaired trafficking of KCNQ4 
due to these variants can be partially recovered by treat-
ment with molecular or chemical chaperones  [6, 73]. 
In contrast, most missense variants, including p.L47P, 
p.S185W, p.R216H, p.W276S, p.R331Q, p.R331W, 
p.R447W, p.V672M, and p.S691G, exhibit different path-
ogenic mechanisms. These mutant proteins reach the 
plasma membrane normally, but the mutations lead to 
the impairment of  K+ current or channel conductance, 
resulting in a dominant–negative effect on normal chan-
nel function [6, 74]. While the channel activity of N-ter-
minal or C-terminal mutant KCNQ4 proteins (such as 
p.L47P, p.S185W, p.V672M, and p.S691G) can be rescued 
using KCNQ activators, such as retigabine or zinc pyrith-
ione, pore-region variants, such as p.W276S, p.R331Q, 
and p.R331W, do not respond to these activators, high-
lighting the need for different therapeutic approaches 
based on specific mutations [6, 74, 75].

3.2  COCH
DFNA9 is a post-lingual, progressive NSHL caused 
by mutations in the COCH gene, which is frequently 
mutated in AD NSHL cases  [4, 76–78]. Patients with 
DFNA9 exhibit variable vestibular symptoms, rang-
ing from normal vestibular function to episodic vertigo 
or persistent imbalance  [76, 77, 79, 80]. HL in DFNA9 
patients typically begins between 20 and 30 years of age, 
initially affecting high frequencies and ultimately pro-
gressing to severe-to-profound levels across all frequen-
cies by the sixth decade of life [4, 77].

The COCH gene encodes cochlin, a major non-colla-
genous protein in the extracellular matrix of the inner 
ear (Fig.  1)  [4, 80]. Although it is abundantly expressed 
in the inner ear, eye, and spleen, its functional role is 
critical for maintaining normal auditory function  [80, 
81]. Structurally, cochlin consists of an N-terminal Lim-
ulus factor C, cochlin, and a late gestation lung protein 
Lgl1 (LCCL) domain, along with two von Willebrand 

factor A-like (vWFA) domains  [4, 79, 81]. Mutations in 
the LCCL domain often cause HL accompanied by ves-
tibular symptoms  [4, 79, 82]. Conversely, mutations in 
the vWFA domain predominantly result in HL, without 
substantial vestibular symptoms. The onset of HL also 
varies by genotype, with individuals harboring vWFA 
mutations experiencing earlier onset than those harbor-
ing LCCL domain mutations [79]. This suggests differen-
tial pathogenesis of HL depending on specific mutations 
in cochlin.

Cochlin plays an important role in the innate immune 
response in the inner ear [81]. This response is critical for 
the maintenance of auditory function by protecting the 
organ of Corti from bacterial and viral invasion [81, 83]. 
However, the activation of the innate immune response 
in the cochlea often induces excessive inflammation, 
leading to collateral damage to the organs of Corti and 
eventual hearing deterioration [84]. Therefore, fine regu-
lation and spatiotemporal control of the innate immune 
response are essential for efficient pathogen elimination 
and the minimization of post-inflammatory damage in 
the inner ear. In murine models, cochlin has been shown 
to perform a protective role during bacterial infection. 
During bacterial infection, the N-terminal LCCL domain 
is cleaved and secreted into the scala tympani, where it 
recruits neutrophils and macrophages and sequesters 
bacteria, thereby preventing pathogens and immune cells 
from accessing the organs of Corti  [81]. Consequently, 
HL resulting from mutations in the LCCL domain may 
be attributed to defects in the innate immune response 
of the inner ear. However, the exact function of vWFA 
domain remains unknown. Although cytotoxicity, aggre-
gate formation, and impaired post-translational cleavage 
are the proposed mechanisms for HL caused by vWFA 
domain variants, further investigation using in  vivo 
mouse models is required to elucidate the physiological 
role of the vWFA domain in the inner ear [4].

4  Age‑related hearing loss
ARHL, also known as presbycusis, is a progressive and 
irreversible sensorineural form of HL that is caused by 
aging [5, 85, 86]. According to previous reports, HL is the 
primary cause of global years lived with disability (YLDs) 
in individuals older than 70  years, affecting 25–50% of 
people in their seventies  [5, 87–89]. ARHL is also asso-
ciated with tinnitus, social withdrawal, depression, cog-
nitive decline, and dementia, contributing to an annual 
global economic burden exceeding $981 billion [89–93]. 
Despite these substantial impacts, governmental and 
industrial efforts to address HL are relatively limited 
compared to other diseases of similar prevalence, and 
there is currently no available preventive treatment for 
ARHL [87, 89].
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ARHL is a complex condition with considerable vari-
ability in onset, severity, and progression among individ-
uals  [94]. Unlike early-onset genetic HL, which is often 
determined by monogenetic factors, the cause of ARHL 
is heterogeneous and involves both environmental and 
polygenic factors  [89, 91]. Although environmental risk 
factors for ARHL, such as prolonged exposure to loud 
occupational noises, are well documented, little is known 
about genetic factors and the underlying cellular and 
molecular mechanisms remain unclear [85, 91, 94, 95].

The identification of risk loci for ARHL is imperative 
in understanding the biological mechanisms by which 
these variants contribute to HL  [96]. Recent genome-
wide association studies (GWAS) have identified multi-
ple genetic variants associated with the development of 
ARHL [87, 89, 94]. Ivarsdottir et al. performed a GWAS 
meta-analysis of 121,934 ARHL cases and 591,699 con-
trols from two non-overlapping Icelandic datasets and 
the UK Biobank and identified 51 sequence variants asso-
ciated with ARHL [94]. More recently, Trpchevska et al. 
conducted a meta-analysis of 17 independent cohorts 
comprising 147,997 individuals with clinically diagnosed 
and self-reported HL and 575,269 controls, and identi-
fied 48 important loci  [89]. We analyzed the allele fre-
quencies of 13 variants commonly found in both studies 
within the East Asian and Korean populations (Table 2), 

highlighting the importance of previously identified loci 
in the pathogenesis of ARHL in East Asians [89, 94, 96].

As ARHL is a multifactorial disease, identifying the 
primary pathogenic mechanisms specifically responsi-
ble for ARHL is challenging. Some studies have reported 
an enrichment of ARHL risk loci in the stria vascularis 
of the inner ear, as well as an increased unfolded protein 
response in the stria vascularis, which may contribute to 
the increased risk of ARHL [85, 89]. A recent study iden-
tified hair cells as the primary cell type responsible for 
ARHL [87]. Therefore, further investigation is required to 
clarify the pathogenesis of ARHL.

5  Conclusion
The genetic basis of NSHL in the Korean population 
elucidates the key genes responsible for both autosomal 
recessive and dominant inheritance patterns. Pathogenic 
mechanisms vary widely, from ion channel dysfunction to 
impaired protein trafficking, and are mutation-specific. 
Ongoing GWAS have identified potential genetic risk 
factors for ARHL, although further research is needed 
to elucidate the underlying molecular pathways. Under-
standing these genetic etiologies is crucial for advanc-
ing precise molecular diagnoses and developing targeted 
therapeutic interventions for hearing loss.

Table 2 Age-related hearing loss-associated loci commonly identified in recent genome-wide association studies

AF allele frequency
a gnomAD v4.1.10 browser (https:// gnomad. broad insti tute. org/; accessed on 16 August 2024)
b KOVA.v2 (Korean Variant Archive for a reference database of genetic variations in the Korean population; https:// kobic. re. kr/ kova/)

rsID number Chromosome
position (hg38)

Effect 
allele

Other 
allele

Gene Coding change Consequence East Asian 
 AFa

Korean 
 AFb

Odds ratio

rs36062310 chr22: 50549676 A G KLHDC7B NM_138433.5; 
p.Val504Met

Missense 
variant

0.00009022 - 1.027

rs10901863 chr10:125123701 T C CTBP2 Intron variant 0.1782 - 1.011

rs5756795 chr22:37726115 C T TRIOBP NM_001039141.3; 
p.Phe1187Leu

Missense 
variant

0.5642 0.603120 0.992

rs9493627 chr6:133468590 A G EYA4 NM_004100.5; 
p.Gly277Ser

Missense 
variant

0.3518 0.391820 1.009

rs67307131 chr11:118609508 C T PHLDB1 Intron variant 0.3099 - 0.992

rs11238325 chr7:50785454 C T GRB10 Intron variant 0.7107 0.711810 1.007

rs6545432 chr2:54590546 G A SPTBN1 Intron variant 0.4387 0.467130 1.007

rs7525101 chr1:165139894 T C LMX1A Intergenic 
variant

0.6343 0.597030 1.006

rs143796236 chr17:81528943 T C FSCN2 NM_001077182.3; 
p.His138Tyr

Missense 
variant

0.00002277 - 1.035

rs13171669 chr5:149221680 G A ABLIM3 Intron variant 0.5945 0.556470 0.942

rs920701 chr13:75842965 C T LMO7 Intron variant 0.3611 0.354260 0.942

rs11881070 chr19:2389142 T C TMPRSS9 Upstream gene 
variant

0.5452 0.563680 0.942

rs143282422 chr10:71617355 A G CDH23 NM_022124.6; 
p.Ala366Thr

Missense 
variant

0.00004456 - 1.032

https://gnomad.broadinstitute.org/
https://kobic.re.kr/kova/
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