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Abstract 

Background The genomic architecture of eukaryotes exhibits dynamic spatial and temporal changes, enabling 
cellular processes critical for maintaining viability and functional diversity. Recent advances in sequencing technolo‑
gies have facilitated the dissection of genomic architecture and functional activity at single‑cell resolution, moving 
beyond the averaged signals typically derived from bulk cell analyses.

Main body The advent of single‑cell genomics and epigenomics has yielded transformative insights into cellular 
heterogeneity, behavior, and biological complexity with unparalleled genomic resolution and reproducibility. This 
review summarizes recent progress in the characterization of genomic architecture at the single‑cell level, emphasiz‑
ing the impact of structural variation and chromatin organization on gene regulatory networks and cellular identity.

Conclusion Future directions in single‑cell genomics and high‑resolution epigenomic methodologies are explored, 
focusing on emerging challenges and potential impacts on the understanding of cellular states, regulatory dynam‑
ics, and the intricate mechanisms driving cellular function and diversity. Future perspectives on the challenges 
and potential implications of single‑cell genomics, along with high‑resolution genomic and epigenomic technologies 
for understanding cellular states and regulatory dynamics, are also discussed.
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1 Introduction
In the past decade, the fields of genomics and epigenom-
ics have undergone a profound transformation, largely 
due to breakthroughs in sequencing technology. Tradi-
tional models of genomic function have been redefined 
as next-generation sequencing (NGS) has progressed 
to unprecedented resolution, even enabling analysis at 
the single-cell level. Compared to studies of bulk cell 

populations, single-cell analysis provides a powerful 
framework for examining cellular heterogeneity within 
populations, revealing intricate differences among indi-
vidual cells in multicellular tissues or organisms. These 
findings underscore how different cell types within the 
same tissue or organism perform diverse functions, 
reflecting a variety of epigenomic landscapes despite a 
shared genome.

The emergence of NGS has driven traditional 
genomic studies into deeper and broader parallel dis-
section of genome at a nucleotide level. These tech-
nologies enable the study of DNA and RNA without 
the need for prior sequence information, allowing for 
discoveries across unexplored genomic regions. NGS 
platforms, offering a high-throughput capability, gener-
ate extensive data that range from relatively short reads 
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to long reads that can span entire genomes, creating a 
data-rich environment that supports research across 
basic and applied sciences, including translational and 
clinical genomics. Today, genomics permeates every 
branch of biology and medicine, enabling both founda-
tional research and targeted medical applications.

Single-cell analyses have been particularly reveal-
ing, exposing cellular heterogeneity across major 
omics layers, including transcriptomics, epigenomics, 
and genomic variation. For instance, single-cell RNA 
sequencing (scRNA-Seq) allows detailed examination 
of transcriptomic profiles in individual cells, which 
helps to map tissue structure and dynamics by iden-
tifying both known and novel cell types. Distinctions 
between cell types—despite identical genomic con-
tent—are often rooted in epigenomic variations, which 
include DNA and histone modifications, chromatin 
accessibility, and 3D genome architecture. Single-cell 
epigenomic assays thus play a critical role in identifying 
functional regulatory elements and chromatin factors, 
providing insights into cell-specific regulatory land-
scapes [1]. Cell type-specific genomic variations such as 
single-nucleotide variations (SNVs) and copy-number 
variations (CNVs) can be identified using single-cell 
whole-genome amplification, offering another layer of 
understanding into cellular diversity [2].

International initiatives, such as ENCODE, the Road-
map Epigenome Project, the International Human Epi-
genome Consortium, EpiGeneSys, FANTOM, and the 
4D Nucleome (4DN) project, have contributed to a 
genome-wide annotation of genes and regulatory ele-
ments, offering profound insights into nuclear archi-
tecture, dynamics, and function. Specifically, the 4DN 
project, launched by the National Institutes of Health 
(NIH) in 2014, aims to map chromosome organiza-
tion in time and space and to elucidate how chromatin 
structure affects gene regulation in both cell popula-
tions and individual cells in humans and mice. The 4DN 
project integrates 3D genomics technologies, single-
cell sequencing, high-resolution microscopy, and bio-
informatics to track temporal changes in 3D genome 
structure, ultimately advancing our understanding of 
chromatin dynamics and their regulatory roles [3].

To capture the dynamics of individual cells, spa-
tial gene expression data obtained from scRNA-Seq 
can be combined with visualization techniques like 
RNA in  situ hybridization (ISH), live-cell fluorescence 
microscopy, or antibody-based methods, allowing the 
spatial localization and quantification of gene expres-
sion within the nucleus. These integrated approaches 
validate cellular responses, physical phenotypes, and 
subnuclear localization, providing a comprehensive 
view of cell state and behavior [4].

In this review, we present recently developed map-
ping techniques designed to resolve genome structure at 
high resolution and to elucidate genome function at the 
single-cell level. We highlight the latest methodologies 
and their applications in single-cell genomics and pro-
vide an overview of the advancements and challenges in 
understanding genomic and epigenomic architecture as 
it relates to cellular heterogeneity.

2  Mapping the genome structure in space 
and time

The nucleus contains distinct, membrane-free nuclear 
structures and compartments, including various nuclear 
bodies. The genome-wide three-dimensional organiza-
tion of chromosomes can be elucidated using proxim-
ity ligation techniques followed by high-throughput 
sequencing [5]. The high-resolution chromosome con-
formation capture technique (Hi-C), an advanced ver-
sion of the 3C method, quantifies all-to-all interactions 
between genomic loci, enabling detailed mapping of 
spatial genome organization, such as chromatin folding 
[5, 6]. The Hi-C genome map confirmed the spatial com-
partmentation such as chromosome territories, gene-
rich euchromatin, and gene-poor heterochromatin. The 
nucleus can be subdivided into smaller structural com-
ponents conceptually such as open/closed chromatin or 
A/B compartments [5], topologically associated domain 
(TADs) [7, 8], and chromatin loops [9].

Considering long-range physical interactions, tran-
scriptional states of a genome were defined by active A 
compartment and inactive B compartment. The A/B 
compartments were estimated by an eigenvector analy-
sis of the genome contact matrix after normalization. 
Megabase-scale regions of local chromatin interactions, 
termed “topological domains” or TADs, are bounded by 
sites enriched with CTCF and cohesin proteins, which 
facilitate chromatin structure and regulatory interac-
tions [9]. Enhancer-mediated transcriptional control can 
be explained by chromatin contact with target genes by 
forming consistent loops within a TAD. Compartments 
and TADs are highly conserved across species and iden-
tified robustly among Hi-C replicates. Chromatin loops, 
which play a key role in genome regulation, vary in detec-
tion sensitivity depending on sequencing depth, resolu-
tion, and noise levels in Hi-C datasets. High sequencing 
depth is especially critical for accurate loop detection, 
ensuring that finer-scale interactions within the genome 
are robustly captured and analyzed [10].

In single-cell Hi-C, interactions between genomic loci 
exhibit high variability across individual cells, result-
ing in sparse and noisy datasets. However, pooled sin-
gle-cell Hi-C data shows similar TADs with that of bulk 
Hi-C [11]. This suggests that the chromatin structure 
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of the individual cell is dynamic but also has common-
ality considering the loss of contact information due to 
limitation of proximity ligation. Additionally, single-cell 
Hi-C (scHi-C) (Fig.  1a) showed that the information 
of localization of active gene domains to boundaries of 
chromosome territory bridges the genomics and micro-
scopic imaging [11, 12]. To extract the meaningful infor-
mation from the sparse and noisy scHi-C data, several 
computational and experimental approaches have been 
developed. For instance, a natural language processing 
method called topic modeling was applied to differenti-
ate cell-cycle stage-specific and tissue-specific cells [13]. 
Another recent report revealed single-nucleotide poly-
morphism variability and distinct structure of imprinted 
loci between two alleles by Dip-C method using single 
diploid human cells at 20-kb resolution [14]. An integra-
tive analysis of DNA methylation and chromatin archi-
tecture in single cells (scMethyl-HiC) has been proposed 
to elucidate simultaneous DNA methylome and chroma-
tin loops [15].

However, three-dimensional organization in the 
nucleus does not satisfy the need for comprehensive 
understanding of four-dimensional information includ-
ing nuclear dynamics across time. In single-cell Hi-C, 
capturing the temporal dynamics of chromatin inter-
actions poses a significant challenge. Sampling cells at 

distinct time points enable the reconstruction of tem-
poral changes in chromatin organization, such as the 
progression of TADs, enhancer-promoter interactions, 
and chromatin loop dynamics. An alternative approach 
is pseudo-time analysis, which computationally orders 
single-cell chromatin interaction profiles along a trajec-
tory representing biological processes, such as differen-
tiation or cell-cycle progression [16]. Studies in mouse 
embryonic stem cells have demonstrated that chromo-
somes condense in preparation for mitosis and rapidly 
expand during early G1 phase, while the genome remains 
dynamically folded without stable organization through-
out interphase. Advanced computational models and 
machine learning algorithms can enhance these analyses 
by reconstructing temporal trajectories and uncovering 
sequential events from static single-cell snapshot datasets 
[17, 18].

As mentioned in the previous section, the stochas-
tic fluctuation of genomic functions can be measured at 
multiple time points in individual cells. Integrating mul-
tidisciplinary technologies enabled us to easily under-
stand the function of diverse genome structure in the 
nucleus. The hierarchical 3D genome structure has been 
interpreted as the following approaches in the 4DN pro-
ject: identification of chromatin contacts and topologi-
cally associating domains (TADs) based on chromatin 

Fig. 1 Various single‑cell analysis methodologies for chromosome conformation. a scHi‑C. b snHi‑C. c Dip‑C. d sciHi‑C. e scSPRITE
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conformation capture (3C) methods and genome-wide 
mapping of open and closed chromatin domains [19]. 
The 4DN project integrates experimental mapping 
techniques, computational modeling approaches, and 
functional validation through CRISPR/Cas9-mediated 
perturbation experiments. This comprehensive network 
has provided valuable insights into the spatiotemporal 
organization of the genome and its functional dynamics 
across various cell types and conditions, including analy-
ses at the single-cell level.

3  Sequencing technologies for single‑cell analysis
Multiple technologies for measuring genomic architec-
ture at the single-cell level have been modified or opti-
mized from methods originally developed for bulk-cell 
analysis. For example, the 3C-based methods are the 
most frequently used as one of genomic approaches to 
map one-to-one, one-to-all, and/or all-to-all chroma-
tin interactions using large number of cells. In the Hi-C 
protocol, cells are cross-linked with agents like formal-
dehyde, and chromatin-bound DNA fragments are iso-
lated for sequencing. This process involves several steps: 
DNA-end modification, labeling, ligation, and amplifi-
cation to construct sequencing libraries. The spatially 
interacting DNA fragments are then mapped onto a ref-
erence genome, enabling the construction of a proximity 
map with megabase resolution. The spatial separation of 
open and closed chromatin is identified as two genome-
wide compartments of dynamic genomic conformations 
by calculating the genome-wide ensemble average of the 
interactions. The Hi-C should also provide a spatial infor-
mation of regulatory elements such as enhancers, silenc-
ers, and insulators. Although Hi-C is a powerful tool for 
elucidating genome organization including interchro-
mosomal contacts, it primarily provides the information 
of cells as a whole rather than heterogeneous chromatin 
structure of individual cells.

Accordingly, the single-cell analysis was developed to 
dissect the underlying complexity in bulk cells, but there 
are still several limitations. The leverage of single-cell 
analysis is to provide insights into characterization of 
heterogeneous cell population and identification of rare 
cell types. To overcome the limited information from 
single cells, multiple approaches have been evolved. One 
example of decoding chromatin organization in a single 
cell is as follows: a single cell or nucleus is isolated manu-
ally or by using flow cytometry and cross-linked. The 
purified DNA fragments are biotin-labeled and ligated 
with adapters including specific barcodes for originating 
cell identification. The topologically associating domains 
(TADs) and loops are analyzed from the sequence reads 
[16, 20]. The modified single-nucleus Hi-C (snHi-C) 
analysis (Fig.  1b) enabled production of 10 times more 

chromatin contacts per cell comparing with the previ-
ous single-cell Hi-C (scHi-C) result [11, 20]. This split-
and-pool library preparation method was designed to 
efficiently label and track individual nuclei [21, 22]. The 
nuclei are randomly split into 96 wells each containing 
a unique biotinylated barcode sequence. Barcoded DNA 
from these wells is pooled, diluted appropriately, and then 
split into another set of 96 wells. This process is repeated 
multiple times, generating unique combinations of bar-
codes with each iteration. The combinatorial synthesis 
approach dramatically increases the number of possible 
barcode combinations, allowing for high-throughput 
sample processing with minimal overlap or ambiguity. As 
a result, the sequential split-and-pool method effectively 
ensures the diversity of library and accurate identification 
of individual nuclei. However, there are issues on some 
false-positive reads from self-ligated or un-ligated frag-
ments due to inefficient restriction enzyme digestion and 
ligation [6]. Another issue in a single-cell analysis is that 
multiple contact map can be hardly obtained because one 
end of DNA fragment should have only a single chance of 
ligation with another one for the proximity ligation. Thus, 
each single-cell Hi-C map leads only to be a part of com-
plete simultaneous interactions in cells.

An improved chromatin conformation capture method, 
termed diploid chromatin conformation capture (Dip-C) 
(Fig. 1c), could be helpful to reduce false positives derived 
from inefficient digestion and ligation [14]. Dip-C tech-
nique utilizes high-coverage whole-genome amplifica-
tion with multiplex end-tagging amplification (META), 
replacing with processes like biotin-pulldown and blunt-
end ligation. By this way, the number of contacts per sin-
gle cell in Dip-C reaches about 1 million. Ligation-free 
approaches such as “split-pool recognition of interactions 
by tag extension” (SPRITE) and chromatin-interaction 
analysis via droplet-based and barcode-linked sequencing 
(ChIA-Drop) could be alternative solutions for overcom-
ing insufficient contact information derived from single 
cells [23, 24]. These methods label crosslinked chromatin 
with barcodes to detect complete contact maps without 
proximity ligation. SPRITE uses a split-and-pool syn-
thesis strategy to barcode with odd and even tags that 
prevent self-ligation and specify chromatin structure. 
ChIA-Drop adopts droplet microfluidics to separate each 
chromatin structure into a droplet and capture multi-
plex chromatin interactions at a single-molecule level. 
Since one droplet contains one chromatin complex and 
one barcode, crosslinked chromatin is selectively tagged 
by the barcode. Similar to single-cell combinatorial 
indexed Hi-C (sciHi-C) (Fig.  1d), a method that applies 
combinatorial cellular indexing to chromosome con-
formation capture [21], single-cell SPRITE (scSPRITE) 
(Fig. 1e) has been also developed for the measurements 
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of genome-wide maps of 3D DNA structure in thousands 
of individual nuclei at a time [22].

Advancements in technology are essential to deepen 
our understanding of higher-order chromatin interac-
tions and their roles in gene regulatory mechanisms at 
single-cell resolution. Developing and optimizing bioin-
formatic pipelines are critical for integrative analyses of 
single-cell Hi-C data in conjunction with other single-cell 
modalities, such as RNA-seq, DNA methylation profiling, 
histone modifications, protein binding, chromatin acces-
sibility, and DNA mutation data. Addressing challenges 
related to low coverage and limited contact information 
will improve the precision of cell type identification and 
regulatory analysis. Simultaneous profiling of chromatin 
structure alongside other genomic or epigenomic fea-
tures within individual cells holds significant potential, 
allowing the observation of phased characteristics from 
a single assay to capture a more comprehensive view of 
cellular function and regulation.

Recently, several single-cell multi-omics techniques 
were emerged to measure multiple features in the same 
cells or nuclei [25–29]. Multi-omics single-cell analysis 
can provide critical insights into individual cell behav-
ior as shaped by epigenetic modifications and gene 
expression changes during development and in disease 
contexts.

4  Studies on single‑cell‑based genome 
architecture

4.1  Unique chromatin organization of single cell
3D genome organization is expected to be different 
in individual cells. The key biological question to be 
addressed is how epigenetically distinct genomes are 
spatially and temporally established during development 
and differentiation. Embryos present unique challenges 
for biological research due to their limited number of 
cells and the extraordinary complexity of their cell types. 
Some cells exhibit pluripotency and are distributed in 
spatially and temporally dynamic patterns during devel-
opment. Traditional bulk analysis methods struggle to 
capture the epigenetic and transcriptional landscapes of 
embryonic cells, as they require larger populations that 
embryos cannot provide. Single-cell analysis emerges 
as an indispensable approach in this context, allowing 
researchers to dissect the intricate chromatin interac-
tions and epigenetic modifications occurring at the level 
of individual cells. By focusing on single-cell methodolo-
gies, it is possible to unravel how distinct genomic and 
epigenetic profiles are established and regulated dur-
ing embryonic development, providing critical insights 
into fundamental biological processes that are otherwise 
masked by population averaging [30].

Combining imaging with an improved Hi-C protocol, 
the whole-genome structures of single G1-phase haploid 
mouse embryonic stem (ES) cells were determined at the 
100-kb scale [31]. Folding of chromosomes into TADs 
and CTCF/cohesin loops does form in only a proportion 
of cells. The gene network driven by pluripotency factor 
and nucleosome remodeling deacetylase (NuRD) can be 
understood from the single-cell genome-wide analysis 
of 3D interactions of individual regulatory elements and 
genes. Tachibana-Konwalski group developed single-
nucleus Hi-C (snHi-C) and efficiently observed the spa-
tial reorganization of chromatin during transition from 
transcriptionally active immature oocyte to zygote tran-
sition [20]. During oocyte maturation, the average signal 
strength of TAD, loop, and compartment were signifi-
cantly decreased, probably due to transcriptional silenc-
ing and chromatin restructuring. Because the maternal 
and paternal genomes are formed by different biologi-
cal process and possess unique epigenetic features, it 
should be determined whether their inherited chromatin 
architecture would be maintained or not after fertiliza-
tion. Distinct chromatin architecture in haploid nuclei 
of zygotes was identified; A/B compartmentalization was 
detected in paternal nuclei but not in maternal nuclei. 
Also, mature oocyte showed longer range contacts and 
less cell-to-cell variability compared to immature oocyte. 
These result showed that zygotic nuclei is different from 
interphase cells in terms of spatiotemporal chromatin 
organization [20].

A similar study showed that cohesin-dependent loop 
extrusion generates higher-order chromatin structures 
within the one-cell embryo [32]. Cohesin is crucial for 
the establishment of chromatin loops, TADs, and other 
large-scale zygote-specific structures, but not compart-
ments in one-cell embryos. The cohesion ring can be 
released by Wapl, and its deletion leads to increase of 
the formation of loop and TAD but decrease of the com-
partmentalization. Furthermore, cohesin limits inter-
chromosomal interactions by compacting chromatin and 
inactivation of cohesin diminishes differences in loop 
strengths between the maternal and paternal genomes.

Super-resolution chromatin tracing, using techniques 
like 3D stochastic optical reconstruction microscopy 
(STORM) and fluorescence in  situ hybridization (FISH) 
[33], shows chromatin conformation at kilobase- and 
nanometer-scale resolution. These imaging techniques 
demonstrate spatially segregated TAD-like domains with 
distinct boundaries in single cells, emphasizing the per-
sistence of TAD-like structures at the single-cell level. 
During cell differentiation, TAD partitioning becomes 
more variable, with heterogeneous structures favoring 
intra-TAD over inter-TAD interactions.
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4.2  Cell cycle and replication
Chromosomes during cell cycle exhibit dynamic struc-
tural changes from highly condensed mitotic structures 
to decondensed interphase structures. Population-based 
Hi-C data shows an averaged chromatin contact infor-
mation from cells in different cell cycle phases, but cell-
cycle phasing information of single nuclei can provide 
an insight on the cell-cycle dynamics of chromosomal 
structural features. Multiplexed high-resolution single-
cell Hi-C using flow cytometry sorting enables continu-
ous chromatin structure profiling throughout the cell 
cycle. To phase single cells at various stages of the cell 
cycle, comparative analysis of short-range (< 2  Mb) ver-
sus mitotic band (2–12  Mb) contacts per cell showed a 
gradual chromosome reorganization as mouse embry-
onic stem cells undergo mitosis [16]. The localized loops 
are enriched after mitosis and maintained through G1 
phase, but aggregated contacts at early- and late-repli-
cating regions are decreased in early-S phase and late-S 
phase for each. There is higher loop enrichment at pre-M 
phase than post-M phase. DNA replication is associated 
with establishment of compartments and a reduction in 
TAD insulation. TAD boundaries disappear after the G1 
phase, and the chromatin contacts are increased across 
TAD boundaries. On the contrary, compartments show 
an increase as the cell cycle progresses and the highest 
enrichment at the end of the S phase. Additionally, distri-
butions of chromosomal conformations are preferentially 
localized in nucleolar organizer regions by 3D whole-
genome modeling and analysis. This indicates that TAD 
insulation is associated with the replication and exists as 
stable independent entity [34].

TAD boundaries positively correlate with replication 
domain boundaries, whereas within a cell type adjacent 
TADs replicate at similar times with a little variation 
[35]. Lamina is associated with late-replicating regions 
and replication-timing transitions between early and late 
replication. Most replication timing transition regions 
(TTRs) are overlapped with late-replicating regions with 
no discontinuity at late TTR borders, whereas early TTR 
borders indicate the structural boundaries of replication 
domains. Two TAD classes are grouped by unsuper-
vised clustering of TADs such that class A corresponded 
to early TADs, whereas class B corresponded to TADs 
within either TTRs or late regions. It is expected that 
TADs may switch replication timing by obtaining fea-
tures associated with their new subnuclear compartment.

Single-cell replication profiling measured by DNA 
copy number demonstrates that borders between repli-
cated and unreplicated DNA are highly conserved across 
cells, indicating active and inactive compartments of the 
nucleus [36]. Intrinsic variability and extrinsic cell-to-cell 
variability are similar between cells, between homologs 

within cells, and between all domains, regardless of the 
replication timing or chromatin state. Replication timing 
has less stochastic variation than selection of replication 
origin.

4.3  3D modeling and computational approaches 
for chromatin structure

Quantitative models of nuclear organization in diverse 
cell types and conditions have great interest for mecha-
nistic interpretation of experimental observations. Two 
major computational approaches for modeling genome 
architecture can be made; data-driven computation 
uses experimental data like Hi-C-based sequencing data 
and imaging data to construct an assembly of chroma-
tin interaction maps from contact information. Another 
approach is de novo modeling which first creates a pre-
dictive ensemble of chromatin conformations from 
hypothesis and then tests with experimental evidences 
[3].

With single-cell chromatin structure data, it is possi-
ble to investigate heterogeneity of 3D models generated 
from individual cells. Intrachromosomal contacts can 
be used as distance restrains, and random model can be 
fitted with given genomic window to best explain con-
tact matrix. However, generating accurate model from 
3C-based assays is a challenge since it is hard to distin-
guish chromosome homology information from diploid 
data. To overcome this issue, some modeling studies can 
be performed by using X chromosome [11] or haploid 
cells [16, 31].

The variation in chromosome structure between differ-
ent cell types is identified by computational approaches 
using sparse and heterogeneous single-cell Hi-C data. A 
population-based probabilistic approach for deconvolut-
ing Hi-C data into a model population of distinct diploid 
3D genome structures was proposed to identify chroma-
tin interactions likely to coexist in individual cells [37]. 
Using this algorithm by maximum likelihood estimation, 
chromosome-specific clusters are found to play a key role 
in the overall chromosome positioning in the nucleus and 
stabilizing specific chromatin interactions.

To extract meaningful insights from single-cell Hi-C 
data, a variety of pipelines and tools have been devel-
oped (Tables 1 and 2). Single-cell Hi-C preprocessing and 
normalization tools tackle key challenges such as data 
sparsity, biases, and noise, but they differ considerably in 
their methodologies. For preprocessing, nuc_processing 
[31] and hickit [14] prioritize generating high-resolution 
datasets, with nuc_processing targeting nucleosome-
level granularity and hickit optimized for efficient data 
handling in large-scale experiments. Tools like GiniQC 
[38] specialize in quality control, using Gini coefficients 
to identify data variability and ensure reliability. In 
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normalization, BandNorm [39] corrects systematic biases 
in interaction matrices, such as sequencing depth and 
chromatin accessibility, while scHiCNorm [40] empha-
sizes normalization tailored for highly sparse single-cell 
datasets, enhancing interpretability for downstream anal-
yses. Meanwhile, SnapHiC [41], and its enhanced version 
SnapHiC-D [42], uniquely integrate spatial chromatin 
data to refine interaction maps, with specific focus on 
enhancer-promoter loops. Together, these diverse tools 
provide a robust foundation for accurate and high-quality 
data processing.

For improving data quality, tools like Higashi and Fast-
Higashi [55] exemplify advanced reconstruction meth-
odologies. Higashi [54] employs deep learning to impute 
missing interactions and denoise sparse datasets, ena-
bling the extraction of biologically meaningful features 
such as TADs. Fast-Higashi extends this capability with 
increased computational efficiency, making it suitable for 
large-scale datasets. In contrast, tools like deDoc2 [59] 
aim to identify TAD-like structures (TLSs) by optimizing 
2D structural entropy, focusing on the detection of chro-
matin boundaries. SnapHiC takes a different approach by 
enhancing chromatin interaction maps through spatial 
integration, prioritizing localized features like loops and 
domains. Together, these tools address different aspects 
of data enhancement, from global imputation to domain-
specific refinement, showcasing a range of approaches to 
improve single-cell Hi-C data quality.

For dimensionality reduction, clustering, and visualiza-
tion, tools like schic-topic-model [13] and deTOKI [51] 
provide interpretable embeddings of high-dimensional 
chromatin interaction data, using natural language pro-
cessing and geometric methods, respectively. In cluster-
ing, scHiCluster [47] groups cells based on chromatin 
interaction profiles, while scDEC-Hi-C [45] applies deep 
learning to uncover latent structures in the data. For 

visualization, MBO [46] and Inter-chromosomal-inter-
actions [50] are tools for exploring chromatin organiza-
tion. MBO specializes in examining intrachromosomal 
domains, while Inter-chromosomal-interactions focuses 
on cross-chromosome contacts. Tools like scVI-3D [39] 
integrate dimensionality reduction with 3D modeling, 
bridging the gap between clustering and spatial chroma-
tin analysis. These tools highlight the diverse analytical 
methods designed to address varying scales and resolu-
tions of chromatin interaction data.

Simulation and modeling tools, such as scHi-CSim [57] 
and ScHiCEDRN [58], address complementary needs for 
single-cell Hi-C studies. scHi-CSim simulates synthetic 
datasets for benchmarking computational pipelines, pro-
viding controlled scenarios to evaluate tool performance. 
In contrast, ScHiCEDRN integrates machine learning to 
model chromatin dynamics and predict structural vari-
ations. For 3D genome reconstruction, tools like SIM-
BA3D [49], Si–C [52], and DPDchrom [53] focus on 
reconstructing chromatin architecture and modeling spa-
tial dynamics. HiC-SGL [60] stands out with its advanced 
graph-based learning approach, predicting sparse chro-
matin interactions with high precision. Additionally, 
NucDynamics [31] integrates chromatin interaction 
data with epigenomic features, offering a multi-omics 
perspective. These tools represent the forefront of 3D 
genome research, bridging simulation, prediction, and 
experimental validation to enhance our understanding of 
chromatin organization and dynamics.

Studies on single-cell-based genome architecture have 
been instrumental in advancing our understanding of the 
spatial organization of chromatin within individual cells, 
revealing insights into cellular heterogeneity and regula-
tory complexity. To facilitate this, pipelines for processing 
and analyzing single-cell chromatin structure sequenc-
ing data have been developed, enabling high-resolution 

Table 1 Pipelines for single‑cell chromatin structure sequencing data

Name Purpose Targeting 
approach

Ref Language Web page

NucProcess Pipeline for scHi‑C analysis scHi‑C  [31] Python https:// github. com/ TheLa ueLab/ nuc_ proce ssing

combinatorialHiC Pipeline for sciHi‑C analysis sciHi‑C  [21] Python https:// github. com/ VRam1 42/ combi nator ialHiC

scHiC Pipeline for scHi‑C analysis scHi‑C  [16] R and Perl https:// github. com/ tanay lab/ schic2

Dip‑C Pipeline for Dip‑C analysis Dip‑C  [14] Python https:// github. com/ tanlo ngzhi/ dip‑c

Hickit Pipeline for Dip‑C analysis Dip‑C  [14] C https:// github. com/ lh3/ hickit

scHiCTools Computational toolbox for analyzing scHi‑C 
data

scHi‑C  [43] Python https:// github. com/ liu‑ bioin fo‑ lab/ scHiC Tools

SnapHiC Pipeline for scHi‑C analysis scHi‑C  [41] Python https:// github. com/ HuMin gLab/ SnapH iC

SnapHiC2 Pipeline for scHi‑C analysis scHi‑C  [44] Python https:// github. com/ HuMin gLab/ SnapH iC/ relea 
ses/ tag/ v0.2.2

scDEC‑Hi‑C Comprehensive single‑cell Hi‑C data analysis scHi‑C  [45] Python https:// github. com/ kimmo 1019/ scDEC‑ Hi‑C

https://github.com/TheLaueLab/nuc_processing
https://github.com/VRam142/combinatorialHiC
https://github.com/tanaylab/schic2
https://github.com/tanlongzhi/dip-c
https://github.com/lh3/hickit
https://github.com/liu-bioinfo-lab/scHiCTools
https://github.com/HuMingLab/SnapHiC
https://github.com/HuMingLab/SnapHiC/releases/tag/v0.2.2
https://github.com/HuMingLab/SnapHiC/releases/tag/v0.2.2
https://github.com/kimmo1019/scDEC-Hi-C
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assessments of chromatin interactions and structural 
variations on a per-cell basis (Table  1). Furthermore, 
computational tools specifically designed for single-cell 
Hi-C (scHi-C) analysis have emerged, offering robust 
frameworks for mapping chromatin contact dynamics, 
uncovering topological domains, and elucidating cell-
specific regulatory landscapes (Table  2). Together, these 
advancements are driving forward the field of single-cell 
genomics and enhancing our understanding of genome 
architecture at an unprecedented level of detail.

5  Perspective
A key objective in single-cell genomics is to elucidate 
how genome and epigenome structures regulate cellular 
function in both health and disease contexts. Achieving 
this goal has driven extensive research into developing 
techniques and protocols, including single-cell isolation, 
library preparation, high-throughput sequencing meth-
ods, data processing, mapping algorithms, computational 
model development, and data interpretation and visu-
alization. For example, the 4D Nucleome (4DN) Project 
exemplifies how genomic architecture can be understood 
in terms of chromatin contacts, loops, compartments, 
cooperativity, heterogeneity, and dynamics by integrating 
3D genomics technologies, single-cell sequencing, high-
resolution microscopy, and bioinformatics.

There are multiple challenges and promises of current 
approaches [2, 3, 29, 61, 62]. Despite significant advances, 
current approaches face several key challenges and hold 
both promise and limitations. First, while a wide range 
of methodologies exist for analyzing genome architec-
ture, contact distances, and frequencies, they often lack 
the resolution and scalability required for high-resolu-
tion, large-scale views of dynamic chromatin structures, 
presenting considerable complexity in their use. Com-
putational modeling has therefore become essential for 
interpreting and predicting chromatin dynamics based 
on fragmented structural data. Second, most existing 
genome architecture models are static, underscoring 
the importance of temporal dynamics from diverse bio-
logical systems to incorporate a unified and dynamic 
framework. Third, single-cell data generation remains 
in a developmental stage due to technical limitations in 
capturing comprehensive genomic information within 
individual cells; relying on data from portions of a single 
cell can obscure intrinsic cellular heterogeneity. Fourth, 
current models should be expanded to include functional 
mechanisms, such as epigenetic modifications, enhancer-
promoter interactions, and transcription factor binding, 
to provide a comprehensive representation of genome 
regulation. Lastly, it is essential to rigorously validate 
experimental and computational models to ensure that 
inferred mechanisms are applicable across systems and 

capable of predicting the sequence-structure–function 
relationship in broader biological contexts.

6  Conclusions
Over the past decade, advancements in sequencing 
technologies and computational resources for single-
cell analysis have significantly matured, resulting in an 
extensive accumulation of data. Single-cell genomics 
and epigenomics have unveiled cell-to-cell heterogene-
ity in gene expression, chromatin conformation, acces-
sibility, histone modifications, and DNA methylation at 
unprecedented resolution. Notably, the 3D organization 
of genomic architecture has been shown to play a criti-
cal role in various biological processes, including ferti-
lization, development, differentiation, and cell division. 
Structural variations in topologically associating domains 
(TADs), chromatin loops, and compartments in diverse 
cell types and conditions have been linked to transcrip-
tional regulation, chromatin remodeling, and differential 
regulation of cellular functions.

Although insights into the regulation of 3D chromatin 
conformation are emerging, single-cell genomics and epi-
genomics still face challenges in achieving comprehensive 
mechanistic understanding due to current technical limi-
tations. Multi-omics approaches at the single-cell level 
have the potential to integrate multiple regulatory factors 
within individual cells, thus providing a more cohesive 
view of the determinants of cellular identity. Further-
more, rapid advancements in technology are enabling 
increasingly detailed profiles of individual cellular states, 
enhancing our understanding of spatiotemporal dynam-
ics in single cells and contributing to a deeper grasp of 
nuclear processes at the single-cell level.
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