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Abstract 

Large‑scale national biobank projects utilizing whole‑genome sequencing have emerged as transformative resources 
for understanding human genetic variation and its relationship to health and disease. These initiatives, which include 
the UK Biobank, All of Us Research Program, Singapore’s PRECISE, Biobank Japan, and the National Project of Bio‑Big 
Data of Korea, are generating unprecedented volumes of high‑resolution genomic data integrated with comprehen‑
sive phenotypic, environmental, and clinical information. This review examines the methodologies, contributions, 
and challenges of major WGS‑based national genome projects worldwide. We first discuss the landscape of national 
biobank initiatives, highlighting their distinct approaches to data collection, participant recruitment, and phenotype 
characterization. We then introduce recent technological advances that enable efficient processing and analysis 
of large‑scale WGS data, including improvements in variant calling algorithms, innovative methods for creating multi‑
sample VCFs, optimized data storage formats, and cloud‑based computing solutions. The review synthesizes key 
discoveries from these projects, particularly in identifying expression quantitative trait loci and rare variants associated 
with complex diseases. Our review introduces the latest findings from the National Project of Bio‑Big Data of Korea, 
which has advanced our understanding of population‑specific genetic variation and rare diseases in Korean and East 
Asian populations. Finally, we discuss future directions and challenges in maximizing the impact of these resources 
on precision medicine and global health equity. This comprehensive examination demonstrates how large‑scale 
national genome projects are revolutionizing genetic research and healthcare delivery while highlighting the impor‑
tance of continued investment in diverse, population‑specific genomic resources.
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1 Introduction
The advent of large-scale national genome projects has 
ushered in a transformative era in genomic research, 
fundamentally reshaping our understanding of human 
genetic variation and its relationship to health and dis-
ease. These initiatives, characterized by their unprec-
edented scale and comprehensive approach to data 
collection, represent a convergence of technologi-
cal advancement, decreasing sequencing costs, and 
growing recognition of the value of population-level 
genetic information. At their core, these projects lev-
erage whole-genome sequencing (WGS) to generate 
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high-resolution genomic data from hundreds of thou-
sands to millions of participants, creating resources 
that far exceed the scope and detail of previous genetic 
studies.

The distinctive power of national genome projects lies 
in integrating comprehensive WGS data with rich phe-
notypic, environmental, and clinical information [1]. 
Unlike traditional genetic studies that often focus on spe-
cific diseases or traits, these large-scale initiatives enable 
systematic investigation of the full spectrum of human 
genetic variation and its impact across multiple health 
outcomes. This holistic approach has proven valuable for 
understanding complex diseases where multiple genetic 
and environmental factors contribute to disease risk and 
progression. The depth and breadth of WGS data allow 
researchers to identify rare variants, structural variations, 
and regulatory elements that might be missed by more 
targeted approaches such as genotyping arrays or WES. 
These projects have emerged against growing recogni-
tion that existing genomic resources inadequately repre-
sent global genetic diversity. Historical biases in genetic 
research have resulted in datasets predominantly drawn 
from European populations, limiting the generalizability 
of findings and potentially exacerbating health dispari-
ties. National genome projects from diverse geographic 
regions, including the UK Biobank [2], All of Us Research 
Program [3], Singapore’s PRECISE initiative [4], Biobank 
Japan [5], and the National Project of Bio-Big Data of 
Korea (NPBBD-Korea) [6], are helping to address this 
imbalance. By capturing genetic variation across differ-
ent ancestral backgrounds, these resources enable more 
inclusive and comprehensive genomic research, ulti-
mately supporting the development of more equitable 
precision medicine approaches.

However, the scale and complexity of these initiatives 
present significant challenges. Generating, storing, and 
analyzing WGS data from large cohorts require substan-
tial computational infrastructure and sophisticated ana-
lytical tools. Privacy concerns and ethical considerations 
surrounding collecting and sharing genetic information 
necessitate careful governance frameworks. Additionally, 
integrating genomic data with clinical practice remains a 
significant challenge, requiring new approaches to data 
interpretation and clinical decision support. The impact 
of these projects extends beyond academic research. 
They catalyze technological innovation in sequencing 
technologies, bioinformatics tools, and data manage-
ment systems. Their findings inform drug development, 
improve disease risk prediction, and advance our under-
standing of basic biological processes. As these resources 
mature, they are increasingly used to support clinical 
applications, from rare disease diagnosis to pharmacog-
enomic prescribing.

This review examines the methodologies, contribu-
tions, and challenges of utilizing WGS data. We provide 
an overview of key initiatives worldwide, highlighting 
their distinct approaches and characteristics. We then 
explore the technological advances that enable these 
projects, from sequencing technologies to data analy-
sis and storage innovations. The review discusses major 
scientific discoveries enabled by these resources, par-
ticularly in understanding rare variants and disease 
mechanisms. Finally, we consider the future directions 
and implications of these projects for advancing preci-
sion medicine and global health equity. Through this 
comprehensive examination, we aim to illuminate how 
large-scale national genome projects are revolutionizing 
our approach to genetic research and healthcare while 
also addressing the challenges and opportunities that lie 
ahead in maximizing their impact on human health.

2  Overview of national genome projects 
with whole‑genome sequencing data

National biobanks have emerged as critical platforms 
for advancing genomics research, combining large-scale 
participant cohorts with WGS across various countries 
(Fig.  1). By integrating high-resolution WGS data with 
comprehensive phenotypic, environmental, and clinical 
datasets, these initiatives enable researchers to uncover 
the genetic architecture of diseases, identify novel bio-
markers, and develop precision medicine strategies tai-
lored to diverse populations. The emphasis on WGS 
within these national biobanks provides unparalleled 
insights into genetic variants across different ancestries 
and establishes a robust foundation for understanding 
population-specific health trends, improving disease pre-
diction, and fostering equitable healthcare solutions.

The UK Biobank is a large-scale biomedical database 
that aims to understand the relationship between genetic, 
environmental, and lifestyle factors in health and dis-
ease. It has recruited approximately 500,000 participants 
aged 40–69  years, with the cohort representative of the 
general UK population [7]. Among these participants, 
452,264 individuals are of European ancestry, accounting 
for 93.5% of the cohort, while 9229 are of African ances-
try, 9674 are of South Asian ancestry, 2869 are of Ashke-
nazi Jewish ancestry, and 2245 are of East Asian ancestry. 
The cohort comprises 54% females and 46% males, with 
a balanced sex ratio enabling robust sex-stratified analy-
ses [8]. The UK Biobank collects extensive phenotypic 
data through surveys on lifestyle, medical history, and 
environmental exposures, as well as physical and cogni-
tive assessments and linkage to electronic health records 
(EHR). This resource includes comprehensive data from 
healthy individuals and those with various medical con-
ditions. Genomic data generation has been a significant 



Page 3 of 16Lee et al. Genomics & Informatics            (2025) 23:8  

focus of the project, with WGS data available for 490,640 
participants, encompassing over 1.1 billion single-nucle-
otide polymorphisms (SNPs) and approximately 1.1 
billion insertions and deletions [9]. The genetic and phe-
notypic data already available establishes the UK Biobank 
as one of the most comprehensive resources for popula-
tion-based health research.

The All of Us Research Program in the United States is 
designed to drive precision medicine by gathering data 
from a diverse population to understand better the fac-
tors influencing health and disease. As of February 2024, 
the program has released WGS data for 245,388 partici-
pants, with the goal of sequencing over one million indi-
viduals [10]. Among participants with WGS data, 77% 
belong to groups historically underrepresented in bio-
medical research, including 22% of African or African 
American ancestry, 18% of Hispanic or Latino ancestry, 
2% of Asian ancestry, and 51.1% of European ancestry, 
along with individuals of mixed or other ancestries. The 

program ensures gender balance and comprehensive 
phenotypic data collection, which includes surveys on 
demographics, lifestyle, family history, and medical his-
tory, along with physical measurements such as height, 
weight, blood pressure, and waist circumference. EHR 
data are available for over 287,000 participants, and 77% 
of participants possess both survey data and physical 
measurements in addition to WGS data [11]. One-fourth 
of participants have up to 10  years of longitudinal EHR 
data. Data from wearable devices also enrich the dataset, 
capturing metrics on physical activity and sleep patterns. 
Researchers access data via a secure cloud-based plat-
form, which supports detailed analyses. The program’s 
inclusion of diverse populations addresses long-standing 
biases in genomic studies and facilitates more inclusive 
approaches to precision medicine.

Singapore’s National Precision Medicine Programme, 
PRECISE, aims to transform healthcare by integrating 
genomic and phenotypic data. The program is divided 

Fig. 1 Overview of genomic resources in the national biobanks. a Geographical distribution of the biobanks, with the sample numbers 
representing the total cohort size targeted or achieved by each biobank. Major biobanks possessing large‑scale WGS datasets exceeding 10,000 
individuals are highlighted. An asterisk (“*”) indicates the targeted cohort size. b Detailed information on WGS sample sizes, ancestry composition, 
and health conditions of the respective biobank datasets were recently disclosed
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into three phases, spanning from 2017 to 2027 [4]. In 
Phase 1, the SG10K_Health cohort was established, con-
sisting of high-quality genome sequencing data from 
9770 individuals representative of Singapore’s major eth-
nic groups: Chinese (58.4%), Indian (21.8%), and Malay 
(19.5%). Phase 2 expanded to the PRECISE-SG100K 
cohort, a longitudinal study involving over 100,000 indi-
viduals, integrating existing cohorts and newly recruited 
participants to reflect the country’s ethnic diversity bet-
ter. Data collection includes comprehensive phenotypic 
information such as cardiovascular and metabolic health 
markers, advanced imaging tests, nutrition, and dietary 
habits. WGS is being conducted for all participants, and 
additional genomic data, including WES and SNP [3] 
arrays, are being generated for selected samples. Multi-
omics efforts encompass transcriptomics, proteomics, 
metabolomics, epigenomics, microbiome analyses, and 
advanced imaging, providing a holistic view of biological 
processes. Phase 3, planned for 2024–2027, aims to scale 
the cohort to 500,000 participants, enhancing statistical 
power for studying genetic and environmental factors 
influencing health.

BioBank Japan (BBJ) was established to support genetic 
research on 51 common diseases affecting the Japanese 
population [12, 13]. Approximately, 200,000 participants 
were enrolled in the first phase (2003–2008), followed by 
70,000 participants in the second phase (2012–2017). The 
cohort’s gender distribution is relatively balanced, with 
53.1% male and 46.9% female participants. BBJ has col-
lected detailed phenotypic data, including general clinical 
information such as smoking and drinking habits, anthro-
pometric measurements, personal and family medical 
histories, and disease-specific data. WGS data are avail-
able for 14,000 individuals, and SNP array genotyping 
has been performed on 270,000 participants across two 
cohorts [13]. BBJ has made significant advancements in 
multi-omics research, completing metabolomic analyses 
on 4000 individuals and planning additional analyses for 
60,000 participants. Proteomic data have been generated 
for 3000 individuals, with another 3000 samples under-
going analysis. By integrating genomic, phenotypic, and 
multi-omics data, BBJ provides valuable insights into dis-
ease mechanisms and precision medicine applications.

In South Korea, the NPBBD-Korea is a national 
R&D initiative to establish an integrated bio-big data 
resource for 1 million Koreans over 9  years, from 2024 
to 2032. Under this project, personal data will be gath-
ered—upon consent—from participants, including bio-
specimens, clinical information, medical records, public 
institution data, personal health data, and genomic and 
other omics data. During Phase 1 (2024–2028), 772,000 
individuals will be recruited (47,000 with rare diseases, 
140,000 with severe/cancer diseases, and 585,000 from 

the general population) to collect clinical and public 
data. Among them, 240,000 people—including 47,000 
with rare diseases, 140,000 with severe/cancer diseases, 
38,000 general individuals with chronic conditions, and 
15,000 general control subjects—will have blood sam-
ples taken for 30 × WGS. Cancer patients will addition-
ally provide blood, urine, and tissue samples, enabling the 
production of 60 × WGS data for 41,000 samples across 
13 cancer types and multi-omics data (transcriptome, 
proteome, metabolome) for 3000 samples in five cancer 
types. During Phase 2 (2029–2032), clinical and pub-
lic data from 228,000 individuals (23,000 with rare dis-
eases, 80,000 with severe/cancer diseases, and 125,000 
from the general population) will be collected. WGS will 
be analyzed for 103,000 people with rare/severe/cancer 
diseases, 160,000 general individuals with chronic dis-
eases, 40,000 general individuals with severe diseases, 
and 30,000 general control subjects. Across both phases, 
the project aims to finalize clinical and public data col-
lection for 1 million participants and generate WGS data 
for 550,000 individuals, ultimately establishing a com-
prehensive biobank. The resulting data will be available 
to researchers starting in 2026. The pilot project of the 
NPBBD-Korea encompassed several genomic cohorts, 
including rare diseases, autism spectrum disorder (ASD), 
and lung cancer, as well as large-scale general popula-
tion cohorts from the Korean Genome and Epidemiology 
Study (KoGES) [14] and Ulsan citizens [6, 15]. WGS data 
collection began recently under the pilot project of the 
NPBBD-Korea, with sequencing completed for 25,000 
individuals, including ~ 15,000 rare disease cases, ~ 3000 
other disease cases, and ~ 7000 healthy individuals [16].

In addition, several other initiatives are advancing 
our understanding of genetic diversity and its impact 
on health. The Estonian Biobank has recruited 200,000 
participants, representing the demographic structure of 
Estonia, with 83% being ethnic Estonians [17]. The pro-
ject has collected extensive phenotypic and genomic data, 
including 2244 high-quality WGS and multi-omics data-
sets such as transcriptomics, metabolomics, and epig-
enomics [18, 19]. The GenomeAsia 100 K Project focuses 
on the genetic diversity of Asian populations, generating 
high-quality WGS data for 1267 samples across diverse 
ethnic groups from India, Malaysia, Korea, and beyond 
[20]. India’s GenomeIndia project has sequenced 2515 
samples to understand disease risks, rare disorders, and 
pharmacogenomics within the Indian population [21]. 
Japan’s Tohoku Medical Megabank Organization has 
sequenced 8380 high-quality WGS samples and geno-
typed for 150,000 individuals, integrating multi-omics 
data to study gene-environment interactions [22]. The 
Swedish SweGen project has constructed a compre-
hensive map of genetic variation within Sweden, with 



Page 5 of 16Lee et al. Genomics & Informatics            (2025) 23:8  

whole-genome sequencing data of 1000 Swedish indi-
viduals [23]. While varying in scale and focus, these pro-
jects collectively enhance the global effort to understand 
genetic diversity and advance precision medicine.

3  Technological advances in national genome 
projects

WGS data from national biobank projects are extremely 
large, encompassing vast genetic information from 
thousands or even millions of individuals. Managing 
and analyzing such massive datasets present significant 
challenges that require advanced technological solu-
tions. To address these challenges, various technological 
advancements and pipelines have been made to process 
and analyze big genomic data efficiently (Table 1). These 
developments include robust variant calling tools, 
innovative methods for creating multi-sample VCFs, 
optimized data representation and storage formats, 
cloud-based computing environments, and advanced 
downstream analysis tools and methodologies.

3.1  Tools for variant calling
The Genome Analysis Toolkit (GATK) pipeline has 
long been the standard for variant calling, integrating 
BWA-MEM for aligning sequencing reads to a refer-
ence genome and the GATK for variant calling [24, 25]. 
This workflow is extensively utilized by prominent pro-
jects such as the UK Biobank [9], NPBBD-Korea [26], 
PRECISE [4], and BBJ [27] due to its reliability and 

precision. However, the computational intensity and 
slower processing times associated with GATK pre-
sent significant challenges when scaling to ultra-large 
datasets, limiting its efficiency for expansive genomic 
studies.

To overcome these limitations, alternative variant 
calling tools have gained significant traction. DRAGEN 
employs FPGA-based hardware acceleration to enhance 
processing speeds and reduce latency substantially [28]. 
This hardware-accelerated approach enables DRAGEN 
to manage large-scale datasets more efficiently, mak-
ing it an ideal choice for extensive projects such as the 
All of Us Research Program [10] and UK Biobank [9]. 
DRAGEN accelerates variant calling and integrates 
other genomic analysis steps, including alignment, 
duplicate marking, and base quality score recalibration, 
offering a comprehensive and streamlined workflow 
optimized for both speed and accuracy. In addition to 
DRAGEN, Sentieon and DeepVariant represent signifi-
cant advancements in variant calling methodologies 
[29, 30]. Sentieon accelerates GATK workflows by pro-
viding fully compatible algorithms that improve speed 
and scalability without compromising accuracy, mak-
ing it valuable for projects aiming to scale their variant 
calling processes [31]. DeepVariant utilizes deep learn-
ing techniques to enhance variant detection precision 
by distinguishing true variants from sequencing errors 
[30]. These advancements optimize variant calling pro-
cesses, ensuring large-scale genomic data can be ana-
lyzed accurately and efficiently.

Table 1 Pipelines and bioinformatics tools utilized in genomic resources in the national biobank

UK Biobank NPBBD-Korea PRECISE BBJ All of Us

Variant calling GATK
DRAGEN (FPGA‑accel‑
erated)

GATK GATK GATK DRAGEN
GATK
DeepVariant (deep learn‑
ing‑based precision)

Multi-sample VCF GATK (GenotypeG‑
VCFs)
DRAGEN (DRAGEN 
Iterative gVCF Geno‑
typer for scalability)
Graphtyper

GATK (GenotypeG‑
VCFs)

GATK (GenotypeG‑
VCFs)

GATK (GenotypeG‑
VCFs)
Graphtyper

Genomic Variant Store 
(GATK based)
Glnexus

Data representation 
& storage

BAM/CRAM
Sparse VCF

BAM
gVCF

BAM/CRAM
Sparse VCF

BAM/CRAM
Dense VCF

BAM/CRAM
Sparse VCF (Hail matrix, 
VDS)

Computing environ-
ment

Cloud‑based RAP 
with DNAnexus 
and AWS

KISTI National Super‑
computing Center 
(https:// www. ksc. re. kr/ 
eng/ index/ main)

RAPTOR (Research 
Assets Provisioning 
and Tracking Online 
Repository)

Local HPC for server‑
based analysis

Cloud‑based workbench 
(Google Cloud Platform 
for large‑scale analysis)

Data management 
system

“Category‑field”‑based 
data structure

DRC and RDR‑CDR 
system

‑ ‑ GIMS

Data access system Tier system, paid for all 
tiers

Tier system, free for all 
tiers

Tier system, free for all 
tiers

Tier system, free for all 
tiers

Tier system, free for all 
tiers

https://www.ksc.re.kr/eng/index/main
https://www.ksc.re.kr/eng/index/main
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3.2  Methods for creating multi-sample VCF
Managing multi-sample VCF files is crucial for large-
scale genomic studies, where integrating data from 
numerous samples is essential. Creating multi-sample 
VCFs facilitates cross-sample comparison of genetic 
variants, aids in the identification of population-level 
allele frequencies and rare variants, and increases the 
confidence of variant calls through aggregated evidence 
from multiple samples [32]. Two primary approaches to 
generating multi-sample VCFs are joint calling [33] and 
aggregation. Each approach employs distinct methodolo-
gies and presents unique trade-offs, making it suitable for 
different project needs.

Joint-calling involves analyzing multiple samples simul-
taneously to call variants. This method enhances accu-
racy by leveraging the shared genetic information among 
samples, allowing for more precise detection of rare 
variants. By considering variants across the cohort, joint 
calling reduces false positives and ensures consistency 
in variant calls. The GATK GenotypeGVCFs is a widely 
used tool for this purpose. Employed in projects like the 
NPBBD-Korea, PRECISE, and Biobank Japan, GATK 
GenotypeGVCFs enable efficient genotyping of multi-
ple samples together, improving the reliability of variant 
detection in large datasets. Graphtyper is another joint-
calling tool that uses a graph-based approach to model 
genetic variation more effectively than traditional linear 
methods [34]. Representing complex genetic structures 
within a variation graph enhances variant calling accu-
racy, especially in regions with high diversity or struc-
tural variation. Used in the UK Biobank alongside GATK, 
Graphtyper improves the detection of variants that linear 
approaches might miss.

Aggregation involves integrating variants called inde-
pendently in individual samples. This approach offers 
ease and flexibility in parallel processing, as each sample 
can be processed separately without simultaneous analy-
sis. It is particularly advantageous for ultra-large cohorts 
where joint-calling becomes computationally prohibi-
tive due to extensive time and resource requirements. By 
shifting to aggregation, researchers can efficiently man-
age and analyze large datasets. A significant benefit is 
its ability to solve the N + 1 problem—the challenge of 
adding new samples to an existing dataset without repro-
cessing the entire cohort. Aggregation allows seamless 
incorporation of new samples by merging their individu-
ally called variants with existing data, thus avoiding the 
need for complete reanalysis. Tools like the DRAGEN 
Iterative gVCF Genotyper (IGG) used in the UK Biobank, 
the Genomic Variant Store (GVS) developed by the All 
of Us Research Program, and GLnexus exemplify this 
approach. DRAGEN IGG enables efficient processing of 
large genomic datasets by iteratively processing gVCF 

files from individual samples and aggregating the results, 
significantly reducing computational time while main-
taining high accuracy in variant detection. GVS provides 
a scalable solution for managing, storing, and accessing 
aggregated variant data from vast samples without the 
computational demands of joint-calling methods. Simi-
larly, GLnexus can be used in this aggregation method, 
efficiently merging gVCF files from individual samples 
into a joint genotyped multi-sample VCF.

In the context of genomic research, the choice between 
joint-calling and aggregation methods for creating multi-
sample VCFs depends on the specific needs and con-
straints of the project. Joint calling is preferred when the 
highest possible accuracy is required and computational 
resources are sufficient to handle the simultaneous analy-
sis of multiple samples. It is particularly beneficial for 
detecting rare variants and ensuring consistency across 
the dataset. Aggregation offers a practical alternative for 
projects involving ultra-large cohorts or when new sam-
ples are continually added to the dataset. It provides scal-
ability and flexibility, allowing researchers to efficiently 
manage and analyze extensive genomic data without the 
prohibitive computational costs associated with joint 
calling.

3.3  Changes in data representation and storage
Managing vast WGS data volumes has driven significant 
innovations in data representation and storage method-
ologies. Due to their superior compression capabilities, 
CRAM (Compressed Reference-oriented Alignment 
Map) files are increasingly replacing traditional BAM 
(Binary Alignment/Map) files [35]. By compressing 
alignment data relative to a reference genome, CRAM 
achieves about a 50% reduction in storage requirements 
compared to BAM files. This significant efficiency is par-
ticularly beneficial for large-scale projects where storage 
costs and data transfer speeds are critical. CRAM opti-
mizes storage by eliminating redundancy in the align-
ment data without compromising data accessibility.

For variant data, VCF remains the standard for stor-
ing variant calls [36]. However, due to their substan-
tial size, traditional dense VCFs become unwieldy with 
large cohorts [37]. To address this, sparse VCF formats 
have been developed, focusing solely on essential variant 
information to reduce data size and enhance process-
ing efficiency. By adopting sparse VCFs, researchers can 
efficiently manage and analyze large-scale genomic data, 
significantly improving storage efficiency and process-
ing performance for more effective and scalable genomic 
analyses. Sparse VCF implementations, such as Hail 
Variant Dataset (VDS), utilized by the All of Us program, 
and DRAGEN IGG multi-sample VCF, employed by UK 
Biobank, facilitate efficient storage and rapid access to 



Page 7 of 16Lee et al. Genomics & Informatics            (2025) 23:8  

variant data [10]. Hail VDS leverages the Hail framework 
to provide a scalable and efficient representation of vari-
ant data, enabling rapid querying, filtering, and analy-
sis across large cohorts by optimizing data storage and 
access patterns [37]. DRAGEN utilizes a compact repre-
sentation of multi-sample variant calls, storing genotype 
information in a highly efficient format that facilitates 
fast access and analysis without the overhead associ-
ated with traditional VCF formats. Tools like Savvy and 
Sparse Project VCF also optimize data management by 
converting dense VCF files into sparse formats, retaining 
essential variant information while reducing redundancy 
[37–39]. This makes large-scale genomic datasets more 
manageable without compromising data integrity.

3.4  Computing environments
The transition from local server-based data analysis to 
cloud-based environments has been pivotal for manag-
ing large-scale genomic projects [40]. Cloud platforms 
offer scalable computational resources, integrated stor-
age solutions, and specialized analytical tools tailored 
for genomics. This addresses the challenges of process-
ing and storing vast amounts of data from ultra-large 
cohorts, enabling efficient execution of computationally 
intensive tasks like whole-genome sequencing without 
significant hardware investments. By leveraging cloud 
infrastructure, researchers can focus on scientific inquiry 
rather than logistical hurdles, making cloud computing 
essential for handling the demands of modern genomic 
research. Notably, projects such as NPBBD-Korea and 
BBJ primarily utilize local server-based approaches. 
At the same time, UKBB, All of Us, and PRECISE rely 
on cloud-based environments to manage and analyze 
genomic data.

The UK Biobank Research Analysis Platform (RAP) 
exemplifies this shift by providing a cloud-based envi-
ronment specifically designed for UK Biobank data. Built 
on DNAnexus and Amazon Web Services (AWS) infra-
structure, RAP allows researchers to perform complex 
analyses directly within the cloud. This eliminates the 
need for extensive local computational infrastructure 
and facilitates seamless collaboration across institutions, 
enabling researchers to access and analyze data efficiently 
from any location. Similarly, the All of Us Workbench 
operates on the Google Cloud Platform (GCP), offering 
robust access to vast datasets and integrating various 
analytical tools to support comprehensive genomic and 
phenotypic studies [10]. The workbench leverages GCP’s 
scalable infrastructure to support large-scale data pro-
cessing tasks, including real-time data querying, machine 
learning applications, and interactive data exploration. 
Additionally, it ensures data security and privacy by 
implementing stringent access controls and encryption 

protocols, thereby safeguarding sensitive genomic infor-
mation while maintaining accessibility for authorized 
researchers.

Cloud providers like AWS, GCP, and Microsoft Azure 
offer specialized genomics services that enhance large-
scale genomic data analysis. These services—AWS 
Genomics Workflows, DeepVariant, and Microsoft Azure 
Genomics—provide scalable tools for variant calling, 
alignment, and computational customization [30]. Plat-
forms like Terra facilitate GATK workflows for collabo-
rative research and efficient whole-genome sequencing 
analysis. Additionally, containerization technologies (e.g., 
Docker, Singularity) and workflow management systems 
(e.g., Nextflow, WDL) automate and streamline genomic 
pipelines, improving efficiency and scalability across dif-
ferent computational environments.

3.5  Downstream analysis tools and methods 
for biobank-scale genomic resources

Advanced analysis tools like Hail and Glow have sig-
nificantly enhanced the processing and interpretation of 
large-scale genomic data by leveraging distributed com-
puting frameworks such as Apache Spark. Hail (https:// 
hail. is/) enables complex analyses—including association 
studies, population genetics, and variant annotation—on 
datasets with millions of variants and tens of thousands 
of samples without performance bottlenecks, offering a 
user-friendly API compatible with Python and Scala for 
developing custom analysis pipelines. Glow (https:// proje 
ctglow. io/) builds upon Apache Spark with optimized 
data structures and algorithms specifically designed 
for genomic data, enhancing tasks like variant filtering, 
annotation, and quality control. By abstracting the com-
plexities of distributed computing and integrating with 
cloud-based environments, Glow allows researchers to 
focus on their analyses without managing the underlying 
infrastructure, making it valuable for national genome 
projects. Both tools reduce computational overhead, 
enable faster processing of large-scale genomic data, and 
support more sophisticated analyses.

Innovative methods like region-based association test-
ing and pre-subsetting of genomic regions have been 
developed specifically for big data analysis to analyze 
large genomic datasets efficiently. These techniques 
enable more targeted and parallel processing of BAM 
and VCF files by dividing the genome into predefined 
sections and conducting independent association tests 
within each region. This design significantly reduces 
computation time and enhances the precision of iden-
tifying genetic variants associated with traits or dis-
eases by focusing computational resources on relevant 
areas. By optimizing large-scale data analysis, these 
approaches improve the resolution and accuracy of 

https://hail.is/
https://hail.is/
https://projectglow.io/
https://projectglow.io/
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genetic association studies, facilitating rapid insights into 
the genetic basis of various conditions.

3.6  Data management and access
Managing large-scale biobank data requires a robust 
and systematic approach, as effective data quality man-
agement and version control are essential for ensuring 
reliability and usability. To achieve this, each biobank 
systematically organizes and manages metadata gen-
erated during data production and analysis, making it 
easily accessible to users. For example, the UK Biobank 
employs a “category-field”-based data structure system 
for organized metadata verification, such as data quality 
indicators and versioning [41]. Similarly, the All of Us has 
established a Data and Research Center (DRC) to oversee 
data management and access control. Within this frame-
work, raw data is stored in the Raw Data Repository 
(RDR), while processed and refined data is housed in the 
Curated Data Repository (CDR), creating a two-tiered 
storage system for greater efficiency [42]. NPBBD-Korea 
utilizes the Genomic Information Management System 
(GIMS) developed by the Korean Bioinformation Center 
[16]. This system ensures systematic management of all 
metadata and quality control indicators throughout the 
entire process, from data production to analysis, further 
enhancing data reliability and usability.

Given the complexity and sensitivity of biobank data, 
access to these datasets is typically governed by tiered 
access systems designed to balance usability, security, and 
privacy. The UK Biobank provides data access through a 
tiered system that balances usability and security. Tier 3, 
the highest level, includes comprehensive datasets such 
as genomic sequences and imaging data, accessed via 
secure platforms like RAP for data viewing and “ukb-
fetch” for downloads [43]. Researchers must meet strict 
requirements, including project approval, institutional 
agreements, and compliance with the material transfer 
agreement. The All of Us Research Program offers secure, 
cloud-based data access through a tiered system designed 
to protect privacy [44]. Public access data is freely avail-
able with minimal reidentification risk. Registered access 
data, with explicit identifiers removed, requires reg-
istration and compliance with the Data User Code of 
Conduct. Controlled access data includes sensitive phe-
notypic and genomic information, requiring additional 
review and approval. SG10K_Health facilitates data 
access through the RAPTOR platform under a struc-
tured governance system [45]. Researchers must submit 
detailed requests to the National Precision Medicine 
Data Access Committee and conduct analyses within 
secure workspaces. Raw data remains protected, and only 
approved summarized results may be exported.

BBJ provides access through its internal and public data-
bases, including the NBDC Human Database and the 
AMED Genome Group Sharing Database [13]. Its three-
tiered system includes controlled-access data, which 
requires approval; group-shared data, available for academic 
studies; and unrestricted-access data, which is openly avail-
able but strictly limited to research use. NPBBD-Korea 
organizes data within the Korean BioData Station into four 
tiers based on sensitivity [46]. Tier 1 includes general infor-
mation freely accessible online. Tier 2 offers non-identifiable 
data with monitored downloads. Tier 3 requires IRB and 
committee approval for data with moderate re-identifica-
tion risks. Tier 4 includes highly sensitive clinical or genetic 
data requiring additional review and approval.

3.7  Security issues
Biobanks face significant challenges in ensuring data 
security, protecting participant privacy, and complying 
with ethical and legal standards. A primary concern is 
data reidentification, where anonymized datasets can be 
matched with external information to reveal identities [47]. 
Advanced anonymization techniques, dynamic data pro-
cessing, strict access controls, and real-time monitoring 
are critical to mitigating this risk. Cybersecurity is another 
major issue, as biobanks are vulnerable to attacks that could 
compromise sensitive data. Measures such as encryption, 
multifactor authentication, and controlled virtual envi-
ronments, like those implemented by the UK Biobank, 
enhance data security. Regular cybersecurity drills and pro-
active strategies help address emerging threats.

Ethical and legal compliance  is essential for maintain-
ing public trust and adhering to research standards [48]. 
Programs like All of Us use “data passports” to facilitate 
international research while adhering to local protocols. 
Regular audits and transparent policies are essential to fos-
tering public trust. Informed consent remains vital, requir-
ing clear communication about data usage and participant 
rights supported by electronic consent systems.

While data sharing is critical for advancing research, it 
carries risks of misuse [49]. Tiered access systems, strict 
data use agreements, and secure platforms like SG10K_
Health’s RAPTOR system balance accessibility with 
confidentiality. Addressing these challenges requires tech-
nological innovation, strong ethical frameworks, and active 
participant engagement to protect biobank data and sup-
port impactful research.

4  What have we discovered and learned 
from the genomic studies of the biobank 
projects?

Large-scale national biobank projects have yielded numer-
ous groundbreaking discoveries that advance our under-
standing of human genetics and disease mechanisms 
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(Fig. 2). These findings span multiple areas, from identi-
fying expression quantitative trait loci (eQTLs) that illu-
minate gene regulation to discovering rare variants that 
contribute to disease risk. In addition, the breadth of phe-
notypic information and population-specific cohorts has 
enabled the delineation of genetic diversity and rare vari-
ants conferring risk to diseases.

4.1  Discovery of eQTL loci using biobank genomic 
resources

eQTLs have revolutionized our understanding of how 
genetic variation influences gene expression, providing 
a crucial molecular bridge between genomic variants 
and complex phenotypes. The emergence of mega-scale 
biobank projects and extensive transcriptomic datasets 

Fig. 2 Key discoveries and insights from biobank‑based genomic studies. eQTLs have revolutionized our understanding of how genetic variation 
influences gene expression, providing a crucial molecular bridge between genomic variants and complex phenotypes. Biobank datasets 
have transformed genetic research by enabling large‑scale rare variant discovery and more nuanced approaches to disease risk stratification 
by integrating rich phenotypic, environmental, and biomarker data. Additionally, the NPBBD‑Korea has provided various biological and clinical 
insights through high‑quality WGS data and aims to improve health outcomes in East‑Asian populations through continuous data expansion
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enables systematic mapping of eQTLs across diverse 
populations, tissues, and disease states, facilitating the 
discovery of novel regulatory mechanisms, deepening 
our understanding of disease biology, and advancing pre-
cision medicine strategies. Early studies leveraging the 
UK Biobank and other large resources provided founda-
tional insights into the genetic regulation of gene expres-
sion and complex traits, establishing the groundwork for 
more sophisticated analyses. For instance, Barbu et  al. 
utilized the UK Biobank data to develop eQTL scores 
associated with psychiatric disorders, revealing signifi-
cant connections between these scores and in vivo brain 
structural connectivity [50]. At the same time, Ward et al. 
conducted a comprehensive genome-wide association 
study (GWAS) of mood instability using the UK Biobank, 
identifying 46 distinct loci linked to nervous system 
pathways and expanding our understanding of psychiat-
ric phenotypes [51].

The integration of multi-tissue and disease context 
analyses has substantially advanced our understanding of 
regulatory networks and disease mechanisms. Gamazon 
et  al. synthesized eQTL data from 44 tissues, including 
biobank-derived samples, to explore tissue-specific and 
shared regulatory networks underlying various traits, 
providing crucial insights into the tissue-specific nature 
of gene regulation [52]. This work was complemented by 
Tachmazidou et  al., who combined eQTL analyses with 
therapeutic target identification in osteoarthritis, uncov-
ering disease-specific pathways that informed precision 
medicine approaches and demonstrated the practical 
applications of eQTL research in drug development [53]. 
Further expanding these insights, a transcriptome-wide 
association study identified genetic loci associated with 
calcific aortic valve stenosis, demonstrating the power 
of large-scale genotype-transcriptome data integra-
tion in elucidating disease mechanisms and highlighting 
the potential for identifying novel therapeutic targets 
through integrated analyses [54].

Recent advances in multi-omics integration and causal 
variant identification have significantly enhanced our 
understanding of complex diseases across diverse popu-
lations. A comprehensive study of colorectal cancer risk 
combined plasma proteome data with genome-wide 
summary statistics from FinnGen, UK Biobank, and mul-
tiple GWAS datasets, successfully identifying 13 proteins 
and shared causal variants linked to colorectal cancer 
development and progression [55]. This multilayered 
approach to disease investigation was further exempli-
fied in asthma research, where investigators utilized 
eQTL data from peripheral blood mononuclear cells and 
nasal samples to identify regulatory variants that modu-
late systemic and airway-specific gene expression, pro-
viding insights into tissue-specific disease mechanisms 

[56]. Similarly, in Alzheimer’s disease research, the inte-
gration of eQTL data with cerebrospinal fluid biomarker 
profiles highlighted crucial loci, including APOE and 
TMEM106B, thereby refining our understanding of AD 
pathogenesis and identifying potential therapeutic tar-
gets through the combination of genetic and molecular 
approaches [57].

The development of innovative computational mod-
els has substantially expanded the utility of biobank-
scale eQTL resources, enabling more sophisticated 
analyses of complex genetic relationships. The Deep-
GAMI model successfully integrated eQTLs and gene 
regulatory networks from PsychENCODE, ROSMAP, 
and GTEx, revealing novel genotype–phenotype rela-
tionships in brain diseases such as schizophrenia and 
AD while demonstrating the power of machine learn-
ing approaches in understanding complex neurologi-
cal conditions [58]. These computational advances have 
been particularly valuable in analyzing UK Biobank data, 
where researchers have uncovered pleiotropic variants 
affecting both blood traits and cancer risk, with immune-
related pathways emerging as central regulatory hubs in 
disease development [59]. These sophisticated analytical 
approaches have also facilitated the identification of pop-
ulation-specific genetic effects, as demonstrated by stud-
ies in the SIREN cohort for stroke in African populations, 
which have revealed unique variants with protective or 
pathogenic effects on disease outcomes [60].

Population-specific studies have emerged as a crucial 
frontier in eQTL research, highlighting the importance 
of genetic diversity in understanding disease mecha-
nisms and developing targeted therapeutic approaches. 
The Qatar Biobank has made significant contributions by 
linking eQTL loci to Mendelian disorders, emphasizing 
the significance of population-specific allele frequencies 
in rare variant interpretation, and demonstrating how 
genetic architecture can vary across different populations 
[61]. Similarly, integrative analyses in lung cancer, using 
nasal and bronchial samples from the CRUKPAP cohort, 
have identified germline variants affecting tissue-specific 
gene expression, immune pathways, and the influence of 
smoking exposure, showcasing the importance of con-
sidering both genetic and environmental factors in dis-
ease development [62]. Work in East Asian populations 
has further expanded our understanding of population-
specific effects, particularly in colorectal cancer tis-
sues, where researchers employed eQTL mapping and 
chromatin interaction data to uncover novel regulatory 
variants influencing PANK1 expression and other cancer-
related pathways [63].

The integration of eQTL variants with clinical biomark-
ers represents a significant advance in translating genetic 
discoveries into clinical applications, with implications 
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for disease prediction, monitoring, and treatment opti-
mization. Multi-omics studies combining proteome-
wide and transcriptome-wide data from CKDGen, UK 
Biobank, and FinnGen have identified key proteins asso-
ciated with chronic kidney disease progression, provid-
ing new insights into disease mechanisms and potential 
therapeutic targets [64]. These findings have been com-
plemented by investigations of immunoglobulin glyco-
sylation traits using TwinsUK and QMDiab datasets, 
which have revealed conserved genetic architectures 
underlying immune regulation and demonstrated the 
importance of considering posttranslational modifi-
cations in genetic studies [65]. The analysis of plasma 
metabolites in the GCAT and Genomes for Life cohort 
and large European datasets has further expanded our 
understanding of how eQTL loci connect with cardio-
vascular risk factors, particularly highlighting the roles 
of genes such as PCSK9 and CELSR2 in lipid metabo-
lism and cardiovascular disease development [66]. The 
examination of indigenous populations, exemplified by 
studies of the Tiwi community in Australia, has demon-
strated how population-specific biobanks can uncover 
unique variants influencing chronic kidney disease that 
may be absent or rare in other populations, underscor-
ing the crucial importance of expanding eQTL discov-
ery efforts beyond traditional cohorts to capture the full 
spectrum of human genetic diversity and its impact on 
disease susceptibility and progression [67]. These diverse 
approaches to biomarker integration and population-
specific analysis highlight the growing sophistication of 
eQTL research and its increasing relevance to clinical 
practice and precision medicine initiatives.

4.2  Leveraging biobank data for rare variant discovery 
and risk stratification

Biobank datasets have revolutionized genetic research, 
enabling large-scale rare variant discovery and more 
nuanced approaches to disease risk stratification. These 
extensive resources, often coupled with rich phenotypic, 
environmental, and biomarker data, provide unprec-
edented opportunities to deepen our understanding of 
complex traits and diseases. By integrating insights from 
population isolates, diverse ancestral groups, and well-
defined clinical cohorts, researchers can reveal previously 
inaccessible genetic variants that inform more precise 
medical interventions.

One of the key advantages of biobank studies lies in 
exploring population isolates, where historical bottle-
necks and limited gene flow have shaped distinct genetic 
architectures. These demographic factors concentrate 
on low-frequency and rare variants that often remain 
undetectable in more heterogeneous cohorts. Kurki et al. 
utilized the Finnish FinnGen resource and identified 

deleterious alleles enriched in the Finnish population 
[17]. This underscores the value of such resources for 
uncovering disease mechanisms. Similarly, Nagasaki 
et  al. used deep whole-genome sequencing in Japanese 
cohorts to identify rare variants enriched in disease-rel-
evant pathways [68]. These findings underscore the bene-
fits of incorporating diverse population backgrounds into 
large-scale genomic analyses. Biobanks have also facili-
tated unprecedented examinations of protein-coding 
variants and allowed researchers to link these genomic 
changes directly to functional consequences. Sun et  al. 
identified clinically relevant disease-specific loci from 
the UK Biobank [69], while the latest study linked genetic 
variation to blood and urine biomarkers that inform dis-
ease prediction and prevention [70]. Large-scale data-
sets further enable structural variant discovery, such 
as copy-number variants (CNVs). Using data from the 
National Bio-Big Data Project, the UK Biobank, and the 
Estonian Biobank [71], researchers uncovered 73 disease-
associated CNVs, connecting specific genomic regions to 
conditions including epilepsy, hypertension, and chronic 
kidney disease.

A critical strength of biobank-driven research is its 
capacity to address ancestry-specific variation and the 
complexity of comorbid conditions. In a study investigat-
ing IBD and PD comorbidity using WGS data [72], high-
impact rare variants in genes like LRRK2 and IL10RA 
were implicated in overlapping disease pathways [73]. 
Another investigation of Crohn’s disease risk alleles in 
African American cohorts demonstrated that variants 
common in Europeans were less frequent in African 
Americans [74], emphasizing that genetic effects dif-
fer across populations. Similarly, rare variant associa-
tion studies have identified population-specific effects in 
diverse samples, reinforcing the importance of inclusive 
and cross-ancestry research strategies.

As biobanks scale to hundreds of thousands of partici-
pants, they afford systematic searches for rare variants 
associated with both common and less prevalent disor-
ders. Exome and genome sequencing of large cohorts 
has linked rare variants to conditions such as beta-
thalassemia, congenital factor XI deficiency, and immune 
thrombocytopenic purpura [75]. Additional studies iden-
tified rare coding variants influencing complex traits 
like hyperlipidemia [76] and demonstrated that rare and 
common variants often converge on the same biological 
pathways [77–79]. The exome study of Australian autism 
families showed the oligogenic inheritance of de novo 
and rare inherited variations associated with autism 
and showed the enrichment of risk variant genes in the 
synaptic process [80], consistent with the major autism 
neurobiology [81, 82]. Such convergence enhances 
our understanding of disease biology and helps refine 
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therapeutic strategies. Beyond traditional disease end-
points, rare variants also shape complex traits, including 
cognitive function. Analyzing WES data from nearly half 
a million UK Biobank participants [83], researchers iden-
tified protein-truncating and damaging missense vari-
ants that significantly affect educational attainment and 
reaction time. These findings demonstrate that rare vari-
ant discovery can illuminate the genetic architecture of a 
broad spectrum of phenotypes, from severe diseases to 
subtle cognitive measures.

4.3  Latest findings with the National Bio-Big Data of Korea
NPBBD-Korea has been utilized to identify novel genetic 
associations in the Korean population. The recent study 
conducted a GWAS on 76 phenotypes using data from 
the KoGES and uncovered 122 novel associations with 
these phenotypes [84]. A meta-analysis combining 32 
phenotypes from KoGES and BBJ yielded 379 additional 
novel associations and enhanced the predictive power 
of polygenic risk scores. Publicly available summary 
statistics for the 76 KoGES GWAS phenotypes contrib-
ute to a deeper understanding of the genetic landscape 
in East Asian populations. This work underscores the 
importance of population-specific databases, which 
enhance genetic research, imputation accuracy, and the 
discovery of rare variants [85]. The establishment of 
the Korean Reference Genome, a part of the NPBBD-
Korea pilot dataset, has substantially improved impu-
tation accuracy, especially for variants that are rare or 
unique to the Korean population [15]. A study utilizing 
data from 1490 individuals demonstrated that a Korean-
specific reference panel outperforms existing panels, 
thereby strengthening the foundation for future popula-
tion genetics, disease association studies, and precision 
medicine approaches [85]. In addition to population-
level insights, the NPBBD-Korea has led to significant 
progress in understanding the genetic underpinnings of 
complex disorders, such as ASD and neurodevelopmen-
tal disorders. WGS data from the project revealed de 
novo mutations that disrupt chromatin interactions in 
ASD, contributing to altered gene expression and lower 
IQ in affected individuals [86], as well as short-tandem 
repeat expansion associated with low adaptability in 
ASD [87]. These studies expand additional genetic fac-
tors of ASD risk beyond de novo and rare coding vari-
ants [88, 89]. Similarly, the application of trio-based 
WGS analysis in children with neurodevelopmental dis-
orders achieved a diagnostic yield of 33%, demonstrat-
ing the power of WGS in uncovering structural, intronic, 
and other noncoding variants that elude conventional 
exome sequencing approaches [90].

The value of WGS extends further into rare dis-
ease diagnosis, as evidenced by studies focused on 

Charcot–Marie–Tooth disease [91], inherited retinal dis-
eases [92, 93], and Marfan syndrome [94]. These inves-
tigations have repeatedly shown that WGS can detect 
complex variant types such as intronic, structural, and 
Alu insertions that are not readily identified by exome 
sequencing or targeted methods. By revealing these 
elusive genetic factors, researchers are improving the 
diagnostic yield and refining clinical management strat-
egies for rare, heterogeneous, and previously unsolved 
cases. Beyond rare diseases, NPBBD-Korea research also 
informed other clinically relevant areas. WGS analysis 
of the Korean population has provided critical data on 
blood group genotypes, enabling more accurate predic-
tion of transfusion-related phenotypes, including the 
prevalence of rare blood types [95]. In cardiomyopathy, 
WGS-based variant classification and pathogenicity 
assessments of MYH7 variants have supported preci-
sion diagnostics and potential therapeutic interventions 
[96]. Additionally, sex differences in genetic burden for 
ASD have been explored using the largest East Asian 
autism WGS dataset, revealing a higher de novo protein-
truncating variant burden in females and offering new 
perspectives on sex-differential liability and phenotype 
severity [26].

The impact of data integrity and advanced sequencing 
technologies has also been a critical focus. Studies have 
emphasized the importance of DNA quality in ensuring 
reliable genomic data, correlating higher genomic qual-
ity numbers with better sequencing depth and accuracy 
[97]. Moreover, the integration of long-read sequencing 
approaches has been crucial for understanding com-
plex variants, epigenetic modifications, and the intricate 
genomic architecture underlying conditions like neuronal 
intranuclear inclusion disease [98].

Collectively, the work under the NPBBD-Korea 
umbrella highlights the transformative potential of 
bio-big data when integrated with WGS, artificial intel-
ligence, and collaborative international efforts [99]. 
Large-scale data collection, including clinical and multi-
omics datasets, will provide an invaluable resource for 
refining AI and machine learning models, enabling pre-
cise disease prediction, novel biomarker discovery, and 
targeted therapeutic strategies. This data expansion will 
also accelerate cancer and rare disease research by facili-
tating the identification of genetic causes, biomarker 
development, and innovative treatment approaches. Fur-
thermore, integrating this data with global genomic data-
bases will drive international collaboration, advancing 
our understanding of complex diseases and expediting 
the development of safer, more effective drugs tailored 
to diverse populations, including Korean-specific genetic 
profiles. By fostering an environment where large-
scale, population-specific genomic resources are readily 
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available, NPBBD-Korea is poised to significantly influ-
ence global genomics, enhance precision medicine, and 
improve health outcomes across diverse populations.

5  Discussion
National genome projects leveraging WGS have emerged 
as powerful engines driving modern genetic research and 
precision medicine. By moving beyond the limitations of 
genotyping arrays and WES, WGS enables a comprehen-
sive characterization of genomic diversity, encompassing 
both coding and noncoding regions, structural variants, 
and ultra-rare population-specific alleles. This all-encom-
passing approach enhances our fundamental understand-
ing of human genetic variation and paves the way for 
more effective disease prevention, diagnosis, and therapy.

One of the most transformative aspects of WGS-based 
national projects is their capacity to illuminate the full 
spectrum of rare variants. Historically elusive, these vari-
ants often profoundly affect disease risk and phenotypic 
diversity, yet they remain underrepresented in traditional 
studies. The enhanced resolution of WGS has brought to 
light previously hidden population-specific variants, as 
demonstrated by the Tohoku Medical Megabank Project 
[68], and rare noncoding variants implicated in human 
traits such as height [100]. These findings highlight the 
importance of moving beyond coding regions, as intronic 
and intergenic variants can influence gene regulation and 
disease pathology. Such discoveries challenge long-held 
assumptions that common variants explain most herit-
able risk and underscore [15] the necessity of exploring 
the entire genomic landscape. Addressing the historical 
bias toward European ancestry populations is another 
critical outcome of inclusive national genome projects. 
By capturing genomic data from diverse populations, 
these initiatives advance our understanding of the genetic 
architecture of complex traits across ancestries. Under-
represented groups stand to benefit substantially, as 
inclusive genomic datasets can improve the accuracy of 
polygenic risk scores, uncover ancestry-specific disease 
variants, and inform tailored medical interventions. In a 
globalized world, this shift toward inclusivity is a scien-
tific and ethical imperative, ensuring that genomic medi-
cine will be equitable and globally relevant.

WGS-powered national biobanks also serve as a 
springboard for new frontiers in precision medicine. 
Detailed genetic data can be integrated with clinical, 
environmental, and lifestyle information, driving the 
development of individualized risk assessments and tar-
geted therapies. Polygenic risk scores derived from WGS 
data have already shown promise in predicting conditions 
like coronary artery disease and type 2 diabetes, as well as 
severe outcomes in global health crises such as COVID-
19 [101]. As new genomic technologies and analytical 

methods emerge, these predictive models will become 
increasingly accurate, guiding clinicians in implement-
ing prevention strategies and personalized treatment 
plans [102]. The exploration of noncoding regions rep-
resents another major advance enabled by WGS [103]. 
While WES provides valuable insights, it covers only a 
small fraction of the genome, overlooking regulatory ele-
ments that can drive disease through subtle modulation 
of gene expression. Studies like OxClinWGS, which iden-
tified structural and deep intronic variants contributing 
to diagnostic yield [104], reinforce the value of a truly 
genome-wide perspective. Such comprehensive analyses 
can inform therapeutic target discovery, revealing how 
regulatory networks and epigenetic factors influence dis-
ease processes. Furthermore, a proteomic dataset will 
be useful for integrating the WGS data and prioritizing 
phospho-kinase targets in cancers [105, 106] or complex 
disorders [107]. Moreover, proteogenomic approaches 
will yield a more holistic understanding of gene function, 
enabling the identification of protein quantitative trait 
loci or proteogenomic biomarkers that can inform drug 
development and preventive strategies.

Despite these advances, challenges remain. The sheer 
scale of national genome projects presents computa-
tional, logistical, and ethical hurdles. Robust bioinfor-
matic infrastructure and standardized methods are 
needed to manage, store, and analyze the deluge of data. 
Ethical considerations around data sharing, privacy, and 
consent must be carefully navigated, especially in inter-
national collaborations. Additionally, sustained efforts 
are required to recruit diverse populations, foster trust, 
and ensure data are used ethically and equitably. The 
underrepresentation of many groups in large-scale 
genomic datasets remains a barrier to fully realizing 
the global impact of precision medicine. Future direc-
tions in this field include increasing the integration of 
WGS with clinical care. As sequencing costs continue 
to decline, incorporating genomic data into EHRs and 
healthcare decision-making becomes increasingly feasi-
ble. Improvements in machine learning, artificial intel-
ligence, and network-based analyses will further refine 
genotype–phenotype correlations, predict complex dis-
ease outcomes, and highlight novel therapeutic targets. 
By pushing toward real-time genomics—where sequenc-
ing data inform immediate clinical decisions—national 
genome projects can directly influence patient care, 
improving outcomes and reducing healthcare disparities.

In conclusion, national genome projects leverag-
ing WGS have expanded the horizons of genetic 
research, transcending the limitations of earlier genomic 
approaches. By capturing rare and common vari-
ants, coding and noncoding regions, and a spectrum of 
structural changes, these initiatives are reshaping our 
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understanding of human biology and disease. The future 
of genomic medicine lies in continued advancements in 
sequencing technology, scalable analytic frameworks, 
inclusive research practices, and seamless integration of 
genomic data into healthcare systems. As these endeav-
ors progress, they promise to deliver innovative solu-
tions that are more equitable, more predictive, and 
ultimately more beneficial for individuals and communi-
ties worldwide.
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