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Abstract 

Gene network models provide a foundation for graph theory approaches, aiding in the novel discovery of drug 
targets, disease genes, and genetic mechanisms for various biological functions. Disease genetics must be inter-
preted within the cellular context of disease-associated cell types, which cannot be achieved with datasets consisting 
solely of organism-level samples. Single-cell RNA sequencing (scRNA-seq) technology allows computational distinc-
tion of cell states which provides a unique opportunity to understand cellular biology that drives disease processes. 
Importantly, the abundance of cell samples with their transcriptome-wide profile allows the modeling of systemic 
cell-type-specific gene networks (CGNs), offering insights into gene-cell-disease relationships. In this review, we 
present reference-based and de novo inference of gene functional interaction networks that we have recently devel-
oped using scRNA-seq datasets. We also introduce a compendium of CGNs as a useful resource for cell-type-resolved 
disease genetics. By leveraging these advances, we envision single-cell network biology as the key approach for map-
ping the gene-cell-disease axis.
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1  Introduction
Networks serve as a powerful biological representa-
tion of gene properties, as functions are often defined 
by the relationship between a set of genes such as path-
ways and gene clusters. Moreover, in addition to under-
standing each gene’s individual function, mapping the 
genetic network provides a system-wide perspective on 
the intricacies of genetic functions and offers insights 
into each gene’s overall contribution to the system [1]. 
Gene networks have been successfully applied to infer 
the functional priority of genes in various diseases [2], 
and network properties have been found to implicate 
genetic changes through mutations or epigenetic modifi-
cations [3]. However, cellular contexts, including specific 

cell types involved in disease processes, are essential for 
accurate network interpretations.

Recent advances in next-generation sequencing (NGS) 
technology have allowed high throughput transcriptome 
profiling at low cost, and collective uploading of gener-
ated NGS data to curated public repositories [4] has made 
them easily accessible. With single-cell RNA sequencing 
(scRNA-seq), where individual cells are measured for 
their transcriptional activities, gene co-expression within 
computationally selected cells can serve as a surrogate 
for inferring genetic associations within specific cellu-
lar contexts. The large number of samples provided by 
scRNA-seq enables the use of linear association metrics 
such as Pearson correlation coefficients (PCC), or non-
linear association metrics such as mutual information 
[5]. However, spurious and spontaneous expressions in 
scRNA-seq profiles make data interpretation particularly 
challenging. Furthermore, each cell typically expresses 
only a limited subset of genes, and this sparsity is com-
pounded by the imperfect transcript-capturing efficiency 
of various single-cell platforms [6]. As a result, single-cell 
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datasets are inherently sparse, which creates significant 
challenges in identifying reliable genetic associations. 
Consequently, most association metrics have shown lim-
ited accuracy across a variety of cellular contexts [7].

One might presume that capturing co-expression using 
a more dense and “reliable” dataset such as bulk RNA 
sequencing, would be the better choice. However, infer-
ring gene associations from scRNA-seq data offers a 
unique opportunity to address cellular context-specific 
interactions, which is a critical factor for their biological 
interpretation [8]. It is increasingly clear that the dynam-
ics of genetic relationships are fluid and dependent on 
a variety of contexts (e.g., cell type). For example, in the 
context of oropharyngeal cancer, evidence shows that the 
KLRB1 gene (encoding CD161) enhances the anti-tumor 
effect when expressed in CD4+ follicular helper cells [9], 
but functions as an immune suppressor when expressed 
in CD8+ T cells [10, 11]. Furthermore, genetic mutations 
occur at the cell type-specific level, and compelling evi-
dence suggests that the state of the cell in which these 
mutations arise may determine the induction of various 
neurological disorders [12, 13]. This indicates that gene 
networks must be interpreted in a context-dependent 
manner and must be modeled in such a way that best rep-
resents specific contexts. In this sense, scRNA-seq data 
provides an excellent opportunity to computationally 
identify cells of specific states and model their interac-
tions that were previously confounded by compositional 
differences within tissue-level samples [14].

Networks focusing on gene regulations are well-estab-
lished, and various methods exist to infer models that 
explain the regulatory activities of transcription factors 
and their regulons using scRNA-seq [15]. Functional 
associations provide a useful generalization of gene inter-
actions that extend beyond transcriptional regulation and 
allow hypotheses that explain the relationship between 
genes and their expressions such as epigenetic regulation, 
expression of quantitative trait loci (eQTLs), and other 
biological phenomena. Here, we focus on methodologies 
we have developed mapping the cell-type-specific genetic 
associations leveraging scRNA-seq datasets and their 
applications to disease genetics. A reference-based “top-
down” approach assumes that interactomes modeled 
using multiple evidence [16] represent a collection of all 
possible interactions across a variety of contexts. Essen-
tially, CGNs modeled with this approach are a subset of 
the interactome representing user-defined cell types. On 
the other hand, a reference-free approach infers gene 
associations “bottom-up” and captures associations 
with the input data only. While the top-down approach 
infers highly confident associations, it is not suitable for 
novel discoveries that could be found in a purely data-
driven fashion. The bottom-up approach allows de novo 

interaction detection but must address the abundance 
of false positive detections. In this review, we focus on 
specific computational algorithms that we have devel-
oped to make both types of inference feasible and explore 
their applications in cell-type-resolved disease genetics 
research.

2 � Reference‑based inference of CGNs
Recently, we have developed scHumanNet (Fig.  1A), 
a reference-based approach to construct and analyze 
CGNs [17]. The construction of CGNs depends on the 
SCINET algorithm [18] with HumanNet interactome 
[16] selected as the reference scaffold. From scRNA-
seq expression data, the SCINET algorithm calculates a 
gene activity score and converts the skewed distribution 
of gene expression to a standard normally distributed 
subspace. For each gene pair existing in HumanNet, the 
minimum activity score of the two genes within the pair 
is statistically assessed for its likelihood against the null 
normal distribution. This is tested for each subsampling 
of the designated cell types, and each P-value from the 
subsampling is aggregated to a meta-P-value using Fish-
er’s combination method to determine if the interaction 
exists within the defined cell type. This scheme balances 
the total number of cells across multiple cell states. When 
the gene pair is assessed to likely exist within the given 
cell type, that gene pair becomes part of the CGN with 
the original weight score of HumanNet.

The validity of the modeled CGNs and their ability to 
reflect key functional genes are essential for the further 
application of graph theories and their interpretations 
in disease contexts. This is not trivial, as there currently 
exists no consensus on cell-type-specific functional gene 
sets for model assessment that is regarded as the gold 
standard. Here we assumed that cell type-associated 
genes collected from public resources would be dis-
tinguished in the modeled CGN topologies, highlight-
ing the networks’ cell-type specificity. We found that 
when ordering genes (nodes) by their degree centrality 
values (sum of edge weights), the scHumanNet CGNs 
significantly better reflected their cell-type specificity 
compared to other existing methods, for both reference-
free and reference-based but with another interactome 
[19]. This indicates that the reference used as a scaffold 
for CGN construction greatly affects the performance 
of the CGNs models and they are generally better at pri-
oritizing prior knowledge-based genes known to have 
specific expression in cell types. Moreover, this finding 
additionally supports that the centrality of gene networks 
is highly associated with central, context-specific biologi-
cal functions.

Accurate network models also enable various down-
stream analyses at the cell type-specific level and provide 
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Fig. 1  Inference of cell-type-specific gene networks from single-cell transcriptome data and their applications in dissecting disease genetics. A 
scHumanNet framework that infers cell-type-specific networks (CGNs) through filtering reference interactome, HumanNet, and analytical modules 
for deriving differential hub genes and deconvoluting gene sets based on network connectivity are described. B De novo inference of CGNs 
through various approaches of preprocessing single-cell transcriptome data. The three methods with independent Pearson correlation coefficients 
(PCC) scores as gene–gene edge weights were converted to log-likelihood score (LLS). High LLS score edges are kept and integrated using 
the identical approach modeling HumanNet, integrating edges from various sources of evidence. C A compendium of reference CGNs inferred 
from human cell atlas data, demonstrating their utility in identifying disease-associated genes by comparing them with CGNs inferred from disease 
samples of the same organ
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insights into the cellular genetic mechanism of disease. 
In scHumanNet, we provide a statistical framework that 
retrieves significant hub genes by comparing multiple 
CGN models (one versus others). This is achieved by 
constructing a null model of centrality values through 
random edge reshuffling. The framework has also been 
extended to extract differential hub genes within the 
same cell type between states (e.g., healthy vs. disease). 
We have found that this method can identify disease 
genes that exhibit minimal expression changes in the 
disease state. Moreover, this network-based approach 
can complement the conventional expression-based 
approach to prioritize disease genes through differen-
tially expressed genes (DEGs) analysis. Many expression 
signatures of diseases have been previously proposed 
based on large-scale transcriptome profiling at the 
patient level [20]. While these gene sets provide valu-
able insights for predicting or explaining various clinical 
outcomes in terms of functional genomics, they are often 
confounded by various cellular factors existing within 
the analyzed samples [14]. We found that network struc-
tures can be leveraged to deconvolute the cellular con-
text of these programs and help identify cell-type specific 
mechanisms associated with immunotherapy responses 
in breast cancer. The scHumanNet framework has also 
been applied to autism spectrum disorder (ASD) to find 
the cell type that is most associated with the disease and 
its respective genes (excitatory and inhibitory neurons), 
which could not be found through an expression-based 
approach [21]. Notably, while these genes were not dif-
ferentially expressed, known ASD-associated genes were 
prominent in inhibitory neurons—specifically when we 
focused on those that lost their centrality in ASD CGNs 
compared to healthy control CGNs. This suggests that 
changes in network centrality could be interpreted to 
represent alterations of critical biological properties [22] 
that are necessary for maintaining health.

3 � De novo inference of CGNs
While using reference interactions as scaffolds shows 
great promise, this approach limits the ability to capture 
de novo gene interactions unique to disease-associated 
cell types. These previously undiscovered interactions 
address important gaps in existing knowledge and poten-
tially provide novel therapeutic targets. To make this 
feasible, we must assess gene expression using a “bottom-
up” approach and extract associations directly from the 
scRNA-seq dataset. Previously, we demonstrated that 
imputation of gene expression is a viable method for 
capturing linear gene associations when consequently 
filtered via the Bayesian framework [23]. In this study, 
we have validated both computationally and experimen-
tally that this data-driven approach not only facilitates 

the prioritization of genes associated with breast cancer 
metastasis but also aids in new target discoveries. Dur-
ing network construction following scRNA-seq data pre-
processing, the filtering step retaining only the enriched 
collection of gene pairs relative to a prior ratio (Bayesian 
statistics approach using true positive to true negative 
gene pair ratio) of a well-defined functional gene set is 
critical [24]. This step controls the numerous false posi-
tives that can arise from imputation [25] or other forms 
of preprocessing such as metacell approaches [26] or 
count matrix transformations [27].

We have found that unique variations of linear gene 
association can be obtained depending on the chosen 
preprocessing method and that some selected meth-
ods can retrieve highly functionally enriched gene pairs 
(Fig.  1B). We have extensively benchmarked existing 
scRNA-seq preprocessing methods and selected the best-
performing approaches based on Bayesian inference, and 
integrated them to construct the final, comprehensive 
CGNs [28]. In addition, we hypothesized that de novo 
interactions modeled from diverse cell types and disease 
contexts could complement existing reference interac-
tomes in terms of disease gene prediction. Indeed, incor-
porating over 850,000 newly discovered gene associations 
through co-expression from multiple scRNA-seq data-
sets significantly enhanced the prediction performance 
of the interactome. These findings further confirm the 
cellular specificity of human disease, the effectiveness of 
data-driven network inference using single-cell expres-
sion data, and its substantial potential to advance preci-
sion medicine.

4 � A compendium of reference CGNs to facilitate 
the study of gene‑cell‑disease axis

Recently, cell atlas projects have been initiated for vari-
ous organs, aiming to establish a “periodic table” of cells 
from a healthy human body [29]. By leveraging these cell 
atlases as a reference, it becomes possible to identify dif-
ferentially expressed genes in each cell type from dis-
eased organs, thereby inferring disease-associated cell 
types. However, comparisons of gene expression between 
control and disease samples remain challenging due to 
the frequent confounding effects of batch variability [30]. 
Cell harmonization across technologies or batches has 
been widely applied [31], but methods to harmonize gene 
expressions across batches in scRNA-seq datasets are still 
largely limited [32]. Moreover, most single-cell expres-
sion datasets investigate cellular heterogeneity in specific 
contexts (e.g., cancer, viral infection) and often lack suit-
able controls. Therefore, performing expression-based 
studies with multiple single-cell datasets remains a major 
challenge in the field. This suggests that a computational 
framework designed to leverage independent datasets 
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as controls to prioritize various disease genes would be 
highly valuable in its utility.

By examining genes with changes in centrality rather 
than focusing solely on their expression within each cell, 
we may gain novel functional insights into genes within 
a specific context. Moreover, this approach may be more 
robust to batch effects compared to expression-based 
analyses across datasets [33]. To facilitate this, we may 
construct a compendium of CGNs inferred from human 
cell atlas data, serving as a valuable reference database 
for identifying disease-associated genes through central-
ity changes between CGNs inferred from disease samples 
and those corresponding to the same organ in a healthy 
state. To support this multi-data comparison using net-
work-based approaches, we developed HCNetlas [34], a 
database of reference CGNs comprising 198 CGNs span-
ning 61 cell types across 25 human organs (Fig. 1C).

Indeed, we have observed in multiple case studies 
including systemic lupus erythematosus (SLE), lung can-
cer, and Alzheimer’s disease that this approach effectively 
prioritizes known genes associated with the disease while 
also enabling new discoveries. Importantly, we compared 
differential centralities using the CGNs inferred from in-
house healthy control samples of the SLE public dataset 
[35] and observed highly similar results when using the 
reference CGNs from the compendium. This indicated 
that in the context of network centrality comparisons, 
control cells from independent datasets (of the same cell 
type) can effectively be leveraged for downstream analy-
ses to understand gene-cell-disease relationships.

5 � Integration and future outlook
In this review, we introduced several computational 
frameworks and resources we recently developed in the 
field of single-cell network biology. With only scRNA-
seq data as input, we outline valid approaches to con-
struct cell-type-specific gene association networks, both 
reference-based and reference-free. We also present a 
resource of databases and analysis methods designed 
to leverage networks for gene prioritizations within any 
specific context of single-cell gene expression. In mul-
tiple case studies, we have demonstrated that network 
topology analysis can reveal new information that could 
not be retrieved via conventional DEG analysis. Moreo-
ver, we show that network topology at the cell type-spe-
cific level can elucidate cellular mechanisms underlying 
various disease signatures previously identified through 
patient-level studies. Lastly, we report that network-
based approaches may serve as a potential framework for 
addressing technical variations in gene studies conducted 
with multiple scRNA-seq datasets. Our research provides 
valuable insights and represents key potential advances 
in the field of network medicine.

Most algorithmic developments for biological net-
works have previously focused on achieving high accu-
racy in modeling cellular networks. With scRNA-seq 
datasets in particular, emphasis has been placed on vari-
ous ways to infer gene interactions and construct gold 
standards to make informed assessments of the network, 
as this remains a non-trivial task [36, 37]. We note that as 
there is a lack of consensus in assessing the accuracy of 
cell type-specific networks in various contexts, hypoth-
eses driven by network structures must be cautiously 
performed with networks of sufficient accuracy. Assum-
ing a well-modeled CGN in a specific context creates new 
possibilities specifically in disease genetics. For example, 
such networks may be utilized as foundational structures 
to train a graph neural network for tasks suited to under-
standing cellular mechanisms of disease [38]. Addition-
ally, various graph theories such as percolation theory 
or attack/failure analysis to evaluate how CGNs behave 
under node or edge addition/removal should be explored 
for use as network-based in silico knock-in and knockout 
experiments. Ultimately, well-modeled CGNs and their 
analysis will allow cell-type-resolved disease gene identi-
fication, a primary endpoint in disease genetics.

We have found potential evidence suggesting that net-
work structures may be more robust to scRNA-seq batch 
effects, an intriguing observation that could be devel-
oped further. Rigorous testing across various datasets 
with a wide range of batch effects should be conducted 
to assess whether network structures maintain structural 
similarity across batches of similar contexts. If so, dif-
ferential network analysis may emerge as a valuable tool 
for performing gene-level meta-analysis across multiple 
scRNA seq datasets, a task that is currently challenging 
due to computational limits. Additionally, genetic prop-
erties that are associated with networks must be further 
investigated. For example, it has been recognized that 
gene isolation has a significant effect on ASD phenotype 
without any corresponding expressional changes. Genes 
with changes in network centrality but not in expression 
level in matched disease samples could potentially reflect 
pathogenesis. This hypothesis could be further explored 
in the future through the integration of multi-omics data-
sets, such as examining whether expression variances 
and network topological changes align with cell-type-
specific mutations or chromatin accessibility. Systematic 
exploration of gene-cell-disease relationships through 
multi-omic CGNs holds immense potential for advanc-
ing precision medicine. Lastly, computationally col-
lecting a variety of “similar” state cells and constructing 
networks based on their heterogeneity shares conceptual 
similarities with pseudo-bulk methods. A natural ques-
tion arises regarding the adequate resolution needed for 
an interpretable network. This could be evaluated in the 
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future using experimentally validated cellular gold stand-
ard gene associations that will necessarily be needed for 
future CGN constructions with various resolutions.
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