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Abstract 

Single-cell RNA-sequencing (scRNA-seq) technology brought about a revolutionary change in the transcriptomic 
world, paving the way for comprehensive analysis of cellular heterogeneity in complex biological systems. It enabled 
researchers to see how different cells behaved at single-cell levels, providing new insights into the process. However, 
despite all these advancements, scRNA-seq also experiences challenges related to the complexity of data analysis, 
interpretation, and multi-omics data integration. In this review, these complications were discussed in detail, directly 
pointing at the optimization of scRNA-seq approaches and understanding the world of single-cell and its dynamics. 
Different protocols and currently functional single-cell databases were also covered. This review highlights different 
tools for the analysis of scRNA-seq and their methodologies, emphasizing innovative techniques that enhance resolu-
tion and accuracy at a single-cell level. Various applications were explored across domains including drug discov-
ery, tumor microenvironment (TME), biomarker discovery, and microbial profiling, and case studies were discussed 
to explain the importance of scRNA-seq by uncovering novel and rare cell types and their identification. This review 
underlines a crucial aspect of scRNA-seq in the advancement of personalized medicine and highlights its potential 
to understand the complexity of biological systems.
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1 Introduction
Two centuries after Robert Hooke and Antonie van 
Leeuwenhoek, cells were redefined as the fundamental 
functional unit of life [1]. Since then, researchers have 
conducted numerous experiments and developed vari-
ous techniques to study cells within complex multicel-
lular systems for a more comprehensive understanding 
[2, 3]. Over the past decade, bulk RNA-sequencing tech-
nologies have been widely employed to investigate gene 
expression patterns on a population scale, which allowed 
researchers to analyze the transcriptome of a group of 
cells or tissues, providing insights into gene activity levels 

within the sample. The emergence of single-cell RNA-
sequencing opened up remarkable prospects for investi-
gating gene expression profiles at the individual cell level, 
when scRNA-seq was first reported in the 4-cell blasto-
mere stage in the year of 2009. Consequently, in 2014, the 
first multiplexed scRNA-seq method was developed [4, 
5]. In 2017, scRNASeqDB, a database dedicated to gene 
expression profiles for human single cells, was created 
[6]. In 2021, Asc-Seurat, a user-friendly web application 
for comprehensive scRNA-seq data analysis, was devel-
oped, which can perform complete analysis [7].

At present, scRNA-seq is increasingly being preferred 
when addressing crucial biological inquiries related to 
cell heterogeneity and early embryo development, par-
ticularly in cases involving a limited number of cells. 
In recent times, scientists have used scRNA-seq on a 
wide range of species, particularly in various human 
tissues, both healthy and cancerous. These studies have 
revealed that gene expression can differ significantly 
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from one cell to another. This insight helps under-
stand how genes are active or inactive in individual 
cells, shedding light on the complexity of our biology 
[8, 9]. ScRNA-seq is a powerful technique for tackling 
issues related to the unpredictable behavior of genes. 
Currently, studies using scRNA-seq hold significant 
potential for uncovering previously unknown cell types, 
mapping out developmental pathways, and investi-
gating the complexity of tumor diversity [10]. The key 
contrast between bulk RNA-seq and scRNA-seq is 
whether each library reflects an individual cell or a cell 
group, driven by challenges like scarce transcripts in 
single cells, inefficient mRNA capture, losses in reverse 
transcription, and bias in cDNA amplification due to 
the minute amounts involved [11, 12]. During qual-
ity control, when using scRNA-seq, it is important to 
identify and remove low-quality individual cells and 
any data that might represent multiple cells. In some 
methods like drop-based sequencing, background 
noise can also be removed. However, one should be 
careful when applying data normalization techniques 
designed for bulk RNA-sequencing because they can 
introduce errors into scRNA-seq data [13]. When it 
comes to aligning sequencing data, the tools commonly 
used for bulk RNA-sequencing can also be used for 
scRNA-seq data. However, dedicated alignment meth-
ods designed for scRNA-seq often offer advantages in 
terms of efficient use of computing resources and faster 
processing speed [11, 14]. There are often missing val-
ues in scRNA-seq data. To combat this issue, multiple 
imputation algorithms which rely on various models 
can be employed. When dealing with batch effects in 
scRNA-seq, it is crucial to account for both technical 
deviations and biological differences. The goal is to pre-
serve the biological variation of interest by reducing 
unwanted variation. While scRNA-seq provides valu-
able advantages for biological research, it has notable 
limitations. Gene expression data obtained through this 
process is often noisy, high-dimensional, and sparsely 
populated. Consequently, to fully harness the potential 
of scRNA-seq technology, specialized computational 
tools tailored to scRNA-seq data are essential [11]. In 
recent years, the explosion of single-cell analysis tools 
has increased the difficulty of selecting the right tool 
for a given dataset [15, 16]. Many tools are designed to 
simplify the processing and comprehension of scRNA-
sequencing data through user-friendly interfaces [17, 
18]. Nevertheless, to the uninitiated, these tools and 
algorithms can resemble elusive “dark elixirs.” Empow-
ering researchers in their quest for the most fitting 
methods, algorithms, and tools demands a compre-
hensive review that unveils the inner workings of these 
computational marvels.

2  Different protocols for scRNA‑seq: an overview
Many scRNA-seq approaches have been suggested for 
single-cell transcriptomic research (Table  1). After the 
initial scRNA-seq technique was published, several alter-
native scRNA-seq strategies emerged. These scRNA-seq 
technologies differ in at least one of the following areas: 
availability of Unique Molecular Identifiers (UMIs), cell 
isolation, cell lysis, reverse transcription, amplification, 
transcript coverage, and transcription. One obvious dis-
tinction between these scRNA-seq approaches is that 
some of these techniques can generate full-length (or 
nearly full-length) transcript sequencing data (e.g., Sn-
drop, Smart-Seq2, Quartz-Seq2, MATQ-Seq, and Fluid-
igm C1), whereas others can only capture and sequence 
the transcripts 3′  or 5′  ends (e.g., REAP-Seq, Drop-Seq, 
inDrop, Seq-Well, DroNC-Seq, and SPLiT-Seq). Differ-
ent scRNA-seq techniques each have unique benefits 
and restrictions. Numerous evaluations that have been 
published analyze thorough comparisons. According 
to one research, Smart-Seq2 performs better than other 
scRNA-seq technologies, including CEL-Seq2, MARS-
Seq, Smart-Seq, and Drop-Seq procedures, in identify-
ing more expressed genes. Furthermore, MATQ-Seq 
is superior to Smart-Seq2 in detecting low-abundance 
genes. Full- length scRNA-Seq methods offer unique 
advantages over 3′ end or 5′ end counting protocols. They 
excel in tasks like isoform usage analysis, allelic expres-
sion detection, and identifying RNA editing due to their 
comprehensive coverage of transcripts. Furthermore, in 
the detection of specific lowly expressed genes or tran-
scripts, full-length scRNA-seq approaches may outper-
form 3′ end sequencing methods [19]. Droplet-based 
techniques like Drop-Seq, InDrop, and Chromium often 
enable a higher throughput of cells and a lower sequenc-
ing cost per cell as compared to whole-transcript scRNA-
seq [20–22]. The ability to handle large numbers of cells 
makes droplet-based techniques particularly helpful for 
detecting various cell subpopulations inside complex 
tissues or tumor samples. While inDrop and CEL-Seq2 
rely on in  vitro transcription (IVT) for amplification, 
the remaining protocols utilize polymerase chain reac-
tion (PCR) as their amplification method as described in 
Table 1.

3  Currently employed methodologies
The primary steps involved in scRNA-seq encompass 
single-cell isolation and capture, cell lysis, reverse tran-
scription, cDNA amplification, and library preparation 
(Fig. 1).
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3.1  Sample preparation and cell isolation
The initial stage of performing scRNA-seq involves the 
extraction of viable and individual cells from the spe-
cific tissue under investigation. Novel methodologies, 
such as the isolation of individual nuclei for RNA-seq 
(snRNA-seq), are used in conditions where tissue dis-
sociation is challenging, or when samples are frozen or 

cells are fragile. Other methodologies include the use 
of “split-pooling”  scRNA-seq techniques, which apply 
combinatorial indexing (cell barcodes) to single cells, 
offering distinct advantages over the isolation of intact 
single cells. These advantages include the ability to han-
dle large sample sizes (up to millions of cells) and greater 
efficiency in parallel processing of multiple samples while 

Table 1 Comparison of protocols based on isolation strategy, transcript coverage, UMI usage, and amplification method

Protocols Isolation strategy Transcript coverage UMI Amplification 
method

Unique features

SnDrop [23] Droplet-based Full-length Yes PCR Combines nuclei isolation with droplet microfluidics; reduces 
dissociation artifacts

REAP-Seq [24] Droplet-based 3′-only Yes PCR Allows simultaneous protein and RNA detection

Smart-Seq2 [25] FACS Full-length No PCR Enhanced sensitivity for detecting low-abundance transcripts; 
generates full-length cDNA

Drop-Seq [26] Droplet-based 3′-end Yes PCR High-throughput and low cost per cell; scalable to thousands 
of cells simultaneously

inDrop [27] Droplet-based 3′-end Yes IVT Uses hydrogel beads; low cost per cell; efficient barcode capture

STRT-Seq [28] FACS 5′-only Yes PCR High-resolution mapping of transcription start sites

CEL-Seq2 [29] FACS 3′-only Yes IVT Linear amplification reduces bias compared to PCR

Seq-well [30] Droplet-based 3′-only Yes PCR Portable, low-cost, easily implemented without complex equip-
ment

Quartz-Seq2 [31] FACS Full-length No PCR Optimized reaction conditions for improved sensitivity

DroNC-Seq [32] Droplet-based 3′-only Yes PCR Specialized for single-nucleus sequencing, minimal dissociation 
bias

sci-RNA-Seq [33] FACS 3′-only Yes PCR Combinatorial indexing for ultra-high throughput without single-
cell isolation equipment

SPLiT-Seq [9, 34] Not required 3′-only Yes PCR Combinatorial indexing without physical separation; highly scal-
able and low cost

MATQ-Seq [35] Droplet-based Full-length Yes PCR Increased accuracy in quantifying transcripts; efficient detection 
of transcript variants

Fluidigm-C1 [36] Droplet-based Full-length No PCR Microfluidics-based single-cell capture; precise cell handling

Fig. 1 A graphical overview of the steps involved in scRNA sequencing. There are certain tools that skip certain steps: DeepImpute and MAGIC 
skip normalization to perform batch effect correction, while EdgeR, MAST, and Monocle2 skip imputation in order to perform differential gene 
expression analysis. DESeq2 directly bypasses normalization and imputation to perform differential gene expression. Furthermore, clustering is done 
immediately by RaceID, SC3, and Monocle2 without the need for batch effect correction
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eliminating the need for expensive microfluidic devices. 
Subsequently, the individual cells are subjected to lysis 
in order to facilitate the capture of RNA molecules. 
Poly[T]-primers are frequently employed to selectively 
analyze polyadenylated mRNA molecules while minimiz-
ing the capture of ribosomal RNAs [37]. Table 2 gives an 
overview of different methods for cell-cell preparation 
and isolation strategy.

3.2  Molecular barcoding and amplification
Following the conversion of RNA into complementary 
DNA (cDNA), the resulting cDNA molecules undergo 
amplification by either the polymerase chain reaction 
(PCR) or in  vitro transcription (IVT) methods. PCR, 
a non-linear amplification process, is utilized in several 
methodologies such as Smart-Seq, Smart-Seq2, Fluid-
igm C1, Drop-Seq, 10x Genomics, MATQ-Seq, Seq-Well, 
and DNBelab C4. At present, there are two distinct tech-
niques for PCR amplification.

The utilization of SMART technology involves the 
exploitation of the transferase and strand-switch activity 
of Moloney murine leukemia virus reverse transcriptase. 
This enzyme is employed to integrate template-switching 
oligos as adaptors for subsequent PCR amplification. 
The aforementioned approach was widely employed for 
the amplification of cDNA. The alternative approach 
involves the ligation of common adaptors to the 5′  end 
of cDNA, using either poly(A) or poly(C), in order to 
facilitate the subsequent PCR reaction. The IVT method 
is a technique employed in many sequencing procedures 
like as CEL-Seq, MARS-Seq, and inDrop-Seq. It serves 
as an amplification strategy and facilitates linear ampli-
fication of genetic material. A second iteration of reverse 
transcription of the amplified RNA is necessary, lead-
ing to the emergence of further 3′ coverage biases. Both 
methodologies have the potential to result in ampli-
fication biases. In order to mitigate biases associated 
with amplification, a technique called UMIs was imple-
mented. UMIs are used to label each individual mRNA 
molecule within a cell during the reverse transcription 

process. This approach enhances the quantitative aspect 
of scRNA-seq and improves the accuracy of data inter-
pretation by effectively eliminating biases introduced by 
PCR amplification. The CEL-Seq, MARS-Seq, Drop-Seq, 
inDrop-Seq, 10x Genomics, MATQ-Seq, Seq-Well, and 
DNBelab C4 methods have incorporated UMIs [3].

3.3  Deep sequencing
After the generation of single cell-barcoded cDNAs from 
individual cells or nuclei, the subsequent sequencing of 
the cDNA can be performed using several advanced 
sequencing technologies. Regarding high-throughput 
sequencing using DNA nanoballs (DNBseq), the DNA 
fragments chosen were subjected to repair processes to 
achieve a blunt end and were subsequently changed at 
the three ends to generate a dATP overhang. Following 
this, the dTTP-tailed adapter sequence was utilized to 
ligate each end of the DNA fragment. The ligation result 
was subsequently subjected to a few cycles of amplifica-
tion, followed by a single-strand cycle. A specific segment 
of the PCR product was subjected to reverse complemen-
tation using a specialized molecule, followed by ligation 
with a single-stranded molecule using DNA ligase. This 
process ultimately resulted in the generation of a circu-
lar DNA library consisting of single-stranded molecules 
[3]. Some other sequencing platforms which are rele-
vant to scRNA-seq are Illumina Sequencing (short-read 
sequencing), DNBseq (DNA Nanoball sequencing, short-
read sequencing), Oxford Nanopore Technologies (long-
read sequencing), and Pacific Biosciences (PacBio, single 
molecule real-time sequencing) [42]. Table 3 gives a com-
parative overview of sequencing platforms.

3.4  Quality check and pre‑processing
Performing quality control is important to remove con-
sistent technical variations that might have been intro-
duced in generating the data, to focus on the biological 
variations of cells. The random sampling procedure 
and the limited RNA content in data increase noise, 
compared to bulk RNA-sequencing [45–47]. Dropout 

Table 2 Summary of different methods of cell preparation and isolation strategy

Method Principle Advantages Limitations Applications

FACS [38] Fluorescence-based sorting 
using specific cell markers

Highly selective, precise isola-
tion

Expensive, cellular stress Targeted cell populations

Microfluidics 
(droplet-based) 
[39]

Encapsulation of cells in drop-
lets with barcoded beads

High-throughput, efficient, 
automated

High cost, transcript loss Large-scale profiling, general 
use

Split-pooling [40] Combinatorial barcoding 
without physical isolation

Cost-effective, highly scalable Complex data handling, bar-
code collisions

Large-scale studies, multiplexed 
samples

snRNA-seq [41] Isolation of nuclei instead 
of intact cells

Minimal dissociation stress, 
suitable for frozen tissues

Lower RNA yield, excludes 
cytoplasmic transcripts

Difficult to dissociate tissues, 
archival samples
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events (genes not detected due to low RNA content) 
create excessive zero counts [48] and can lead to highly 
sparse datasets, making it difficult to detect genuine 
biological variations within individual cells. Filtering 
out lower quality cells is crucial for expression analysis; 
criteria vary based on cell and tissue type [3, 20, 49].

Two primary quality metrics in scRNA-seq are 
expressed counts and total library size. Low counts sug-
gest poor RNA capture, while high counts may indicate 
multiple cells captured erroneously, depicted visu-
ally via violin plots [17, 19, 50]. Filtering out potential 
doublets or multiplets in scRNA-seq involves setting 
thresholds based on expressed feature counts, affected 
by both biological and technical factors. Sequencing 
depth influences read and feature counts, and using 
robust statistics like median absolute deviations aids 
in identifying outlier cells [51–53]. There are certain 
established methods for detecting doublets [54], which 
are given in Table  4. Mitochondrial gene presence in 
the data can also affect the quality of data; its propor-
tion can vary from tissue to tissue like heart cells typi-
cally exhibit around 30%, contrasting with lymphocytes 
[55, 56].

In droplet-based scRNA-seq protocols, another 
source of unwanted signals comes from ambient RNAs. 
These are RNA molecules that are freely floating in the 
cell lysate due to the breakdown of dead or dying cells 
before the droplets are separated. Since these ambient 
mRNAs are found everywhere, they add extra back-
ground noise and can greatly muddle the quality of the 
data and the true biological signals we are trying to 
capture [68]. Methods like SoupX, DecontX, and Cell-
Bender effectively remove ambient RNA influences in 
single-cell RNA-seq. SoupX uses known negative mark-
ers (genes not expressed in specific cell types), while 
DecontX employs Bayesian inference, and CellBender 
uses deep generative models [63, 68].

Low-abundance genes should be excluded as they 
do not provide enough information for reliable analy-
sis. Additionally thresholds should be set based on the 
number of cells expressing a gene or the genes average 
expression level [18, 45, 65]. Depending on the analysis, 
non-coding genes may be excluded to simplify the data. 
In scRNA-seq data, mitochondrial genes are discarded 
after quality control to avoid biases, as mitochondrial 
transcripts are not usually expressed in the nucleus [114, 
115].

Among quality-checking and preprocessing tools, Solo 
was reported to have an accuracy of 83.59%, with a runt-
ime of 13–17 min and memory usage of 7–12 GB across 
different standard datasets [61]. Scrublet demonstrated 
an accuracy of 99% and supported scalability but lacked 
data on runtime and memory consumption [52]. Drop-
letQC can process 100 million reads in under 133 s on 
8 CPUs with 16 GB RAM, highlighting its efficiency for 
nuclear fraction analysis [60]. ScPipe required 10 h to 
process a dataset with 112 million reads while consuming 
540 GB of RAM, making computation highly resource-
intensive [66]. CellBender exhibited adaptability, with 
runtime varying from 20 min to 1 h depending on dataset 
size and GPU availability, though precise memory usage 
data was unavailable [64]. DoubletFinder was notable for 
its limitation in detecting homotypic doublets and the 
need for parameter optimization, but it performed better 
when integrated with sample multiplexing [67].

3.5  Normalization
Normalization is an important process in scRNA-seq 
data analysis, as it helps focus on meaningful informa-
tion by fixing issues like differences in how well genes are 
captured, the depth of sequencing, and other technical 
variations that can affect the data. There are two main 
categories of normalization: within sample normalization 
and between sample normalization [12, 116] (Table  4). 

Table 3 Comparison of sequencing platforms based on key parameters

Sequencing 
platform

Principle Throughput Read length Accuracy Cost Error type Application

Illumina [43] SBS Very high Short (50–300 
bp)

Very high ( ∼
99.9%)

Cost-effective Substitutions High-throughput 
gene quantifica-
tion

DNBSeq [3] DNA Nanoball 
sequencing

Very high Short (50–200 
bp)

Very high ( ∼
99.9%)

Cost-effective Substitutions High-throughput 
gene quantifica-
tion

Oxford Nanopore 
[44]

Nanopore 
sequencing

Moderate–high Long (up 
to > 100 kb)

Moderate 
(90–98%)

Moderate, 
declining

Indels/substitu-
tions

Full-length isoform 
detection

Pacific Bio-
sciences [44]

Single molecule 
real-time (SMRT)

Moderate–low Long (5–30 kb 
or more)

Moderate 
to very high 
(90–99.9%)

Higher, declin-
ing

Indels/substitu-
tions

Isoform charac-
terization and full-
length transcript 
profiling
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Within-cell normalization methods like calculating TPM 
(Transcripts Per Kilobase Million) or RPKM (Reads 
Per Kilobase of transcript per Million mapped reads)/
FPKM (Fragments Per Kilobase of transcript per Million 
mapped reads) are commonly used to address sequenc-
ing depth within individual cells. But, these methods may 
not be suitable for certain downstream analyses as they 
do not account for changes in RNA content and can be 
misleading when analyzing differentially expressed genes. 
However, studies in bulk RNA-seq have emphasized the 
vital role of between-sample normalization. The non-
linear normalization method, without UMIs, effectively 
explores cellular heterogeneity and accurately analyzes 
scRNA-seq data with high library sizes. This method 
computes individual normalization factors for each cell 
and gene by using information from multiple genes and 
cells, reducing technical biases in scRNA-seq. It is more 
flexible than traditional size factor normalization, as it 
estimates using many genes with minimal constraints 
[117]. For example, DINO works on the principle of non-
linear method [69].

In scRNA-seq normalization, two main methods are 
employed: cell-based and gene-based. The cell-based 
approach calculates a specific size factor for each cell, 
used to normalize its gene expression. “Scran”  uses this 
by pooling cells for robust size factor estimation and 
reducing the impact of excessive zeros. On the other 
hand, gene-based methods like SCnorm and SCTrans-
form in Seurat adjust genes based on their sequencing 
depths or abundance levels. This distinction enables pre-
cise normalization in scRNA-seq analysis [45, 72, 118, 
119].

Among normalization tools for scRNA-seq, Scanpy 
and Seurat normalization stands in terms of scalability 
[49, 50]. DESeq2, which is a differential expression tool, 
has an inbuilt method for normalization and presents 
concern with false positive rates, which can affect down-
stream analysis [120]. LIGER is a very useful tool but 
has limitations in integrating diverse features like gene 
expression and intergenic methylation, potentially reduc-
ing its effectiveness for multiomics studies [73].

3.6  Imputation method
ScRNA-seq data often exhibit missing values, notably 
zero expression counts for numerous genes. Some of 
these zeros have biological significance, indicating either 
gene inactivity or mRNA degradation post-expression. 
Additionally, technical and sampling factors in scRNA-
seq contribute to non-biological zeros, arising from issues 
like reverse transcription failures, low mRNA quantities, 
inefficient amplification, or restricted sequencing depth. 
These non-biological zeros introduce intercellular vari-
ability, impede the detection of gene relationships, and 

exert a notable influence on downstream analyses. In 
contrast, employing imputation, i.e., replacing missing 
values with estimated alternatives, proves an effective 
strategy for addressing these missing data.

Effectively classifying and comparing popular impu-
tation methods is paramount in providing users with 
informed guidance for various datasets and unique needs 
(Table 4). These methods can be broadly categorized into 
four distinct groups:

• Model-based methods rely on statistical models 
encompassing technical and biological variability, 
estimating parameters to perform imputation.

• Low-rank matrix-based approaches utilize a low-
rank matrix to uncover spatial representations of 
cells, capturing linear relationships and reconstruct-
ing a less sparse expression matrix.

• Data smoothing methods, on the other hand, lever-
age gene expression values from similar cells to adjust 
all values, including zeros and non-zeros, employing 
a smoothing technique.

• Deep learning methods use advanced techniques to 
identify potential spatial representations of cells and 
reconstruct the observed expression matrix based 
on these estimated representations. This classifica-
tion provides users with a structured framework for 
selecting the most suitable imputation method tai-
lored to their specific dataset and analytical require-
ments [121].

Ruochen Jiang stresses the importance of tailoring impu-
tation methods to the specific attributes of single-cell 
data [122]. For UMIs-based sequencing, which lacks 
zero-inflation, using imputation methods designed for 
zero-inflated models is inappropriate. While tasks like 
cell dimensionality reduction or clustering can often be 
performed without imputation at the cell level, selecting 
the correct imputation method is critical for optimal per-
formance in differential expression (DE) analysis. Con-
versely, non-UMI data benefits from imputation utilizing 
a non-zero inflation model, particularly for tasks like cell 
down scaling or clustering. In DE analysis, any imputa-
tion method outperforms no imputation or binarization. 
Ultimately, in cases where the cell library is sufficiently 
extensive, indicating ample sequencing depth, imputa-
tion may be unnecessary. This underscores the impor-
tance of aligning imputation strategies precisely with the 
distinctive characteristics and analytical objectives of sin-
gle-cell datasets [12].

IGSimpute offers GPU-accelerated imputation but is 
unsuitable for rare cell types, with training times rang-
ing from 4 min (100,000 cells) to 64 min (1,000,000 
cells) using a batch size of 1000 [74]. SciGAN requires 
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large datasets with at least a few thousand training sam-
ples but lacks detailed runtime or scalability data [75]. 
CMF-Impute may introduce bias when dropout events 
are abundant, with runtimes ranging from 6 to 12.6 min 
(0.21 hours), depending on dataset size [123]. DrImpute, 
achieving an accuracy of 96%, focuses on cell-level cor-
relations but ignores gene-level correlations, limiting 
its precision. It requires approximately 750 s for 10,000 
cells [78]. DeepImpute shows a low mean squared error 
(MSE = 0.0259) and high correlation (0.984) with ground 
truth, making it a robust option, running in about 12 
min on a dataset with 50,000 cells using 10 GB of RAM 
on an 8-core machine [76]. ScLRTC provides cluster-
ing performance indicators (ARI = 0.7, NMI = 0.8) and 
takes approximately 8000 s to process 12,500 cells [79]. 
ScHinter offers a high ARI of 0.9 and a highly variable 
runtime, from 0.3 to 56.22 s, depending on dataset com-
plexity [80].

The choice of an imputation tool depends on dataset 
size, computational constraints, and the level of accu-
racy needed, with DeepImpute, DrImpute, and ScHinter 
appearing as strong contenders for balancing accuracy 
and efficiency.

3.7  Batch effect
Variations in single-cell RNA-sequencing data are known 
to be influenced by technical factors. In some cases, the 
measurement of biological variations among the samples 
is affected by these technical factors, making it difficult 
to address the research problems. Confounding factors in 
single-cell RNA-sequencing data encompass experimen-
tal biases and batch effects. Systematic technical biases, 
like unequal PCR amplification, cell lysis discrepancies, 
variable reverse transcriptase enzyme efficiency, and 
stochastic molecular sampling during sequencing, are 
unavoidable sources of variation [124] (Table  4). There-
fore, batch effect is the major challenge that needs to be 
resolved before downstream analysis.

Batchelor demonstrates a linear increase in CPU 
time with dataset size, requiring 2 min for 7000 cells 
and up to 20 min for 70,000 cells, indicating scalability 
but potential inefficiencies for extremely large datasets 
[82]. Beer is a lightweight tool with a runtime of only 
1–5 min but lacks further performance details [83]. 
scVI completes batch correction on 100,000 cells in 25 
min, leveraging an NVIDIA Tesla K80 GPU with 24 GB 
RAM, making it suitable for large-scale analyses [84]. 
scScope takes under 100 min for 8000 cells across five 
iterations on a high-performance Xeon E5 CPU with 64 
GB RAM and an Nvidia Titan X GPU, suggesting it is 
computationally demanding [86]. Harmony processes 
500,000 cells in 68 min while consuming 7.2GB RAM, 
offering a balance between efficiency and resource 

usage [87]. LIGER provides batch correction but has a 
limitation in multiomics integration, which may affect 
studies requiring diverse data integration [73]. scBatch 
is not recommended for highly imbalanced study 
designs and exhibits scalability issues, handling a few 
hundred cells in minutes but taking hours for datasets 
exceeding 1000 cells [88].

The choice of a batch correction tool depends on 
dataset size, computational resources, and integration 
requirements, with Harmony and scVI standing out for 
large-scale studies, while Beer offers a quick but less 
detailed solution.

3.8  Feature selection and dimensionality reduction
In managing high-dimensional data, dimensionality 
reduction stands out as a crucial strategy, alongside fea-
ture selection (Table 4). When dealing with single-cell 
RNA-sequencing data, a dual-step approach is often 
required. Initially, principal component analysis (PCA) 
is employed to simplify the data. Subsequently, tech-
niques like t-distributed stochastic neighbor embed-
ding (t-SNE) or Uniform Manifold Approximation and 
Projection (UMAP) are utilized to create visual rep-
resentations for enhanced comprehension [3]. PCA, 
a potent mathematical tool, adeptly handles large 
datasets, preserving both local and long-range pat-
terns. Each principal component acts as a unique axis, 
orthogonal to the others, enabling the reconstruction of 
the overall genetic makeup. Determining the number of 
principal components involves identifying the top ones 
explaining 80 to 90% of the total variances, or discern-
ing an “elbow point” in the analysis [125].

To address missing or dropout data readings, adap-
tations of PCA have emerged, incorporating the zero-
inflated negative binomial distribution (ZINB) [126]. 
t-SNE, a non-linear technique, excels in preserving 
local relationships among data points, effectively seg-
regating clusters. Nevertheless, it may not accurately 
represent long-range relationships or structures in the 
data [125, 127]. Diffusion map (DM), another widely 
used non-linear technique, condenses both nearby and 
far-reaching patterns into a lower dimension, specially 
designed to track subtle shifts and transformations in 
a transcriptome [128]. UMAP, a computationally effi-
cient method, surpasses DM and t-SNE. It captures 
both local and long-range patterns, recovering global 
structures in single-cell RNA-sequencing data [129]. 
Non-linear projection techniques like DM, t-SNE, and 
UMAP can compress data into 2 or 3 dimensions, but 
they may introduce distortions and non-biological arti-
facts, making them primarily recommended for visuali-
zation [11].
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3.9  Cell clustering
ScRNA-seq clustering helps elucidate cell-to-cell hetero-
geneity and uncover cell sub-groups and cell dynamics at 
the group level. Different methods have been created to 
find different types of cells in single-cell RNA-seq data 
(Table 4). There are five methods of clustering: K-means 
clustering, hierarchical clustering, graph based cluster-
ing, density-based clustering, and deep learning-based 
clustering [130]. K-means clustering is a widely used 
method for grouping data. It works by repeatedly find-
ing a set number of cluster centers (called centroids) in 
a way that minimizes the total squared distance between 
each data point and its closest centroid. This method is 
efficient even with large datasets, as it scales well with the 
number of data points [131]. SAIC and RaceID both the 
clustering tools are based on k-means clustering [93, 95].

Hierarchical clustering is widely used in single-cell 
RNA-seq analysis. It comes in two types: agglomerative, 
where cells merge based on similarity, and divisive, where 
clusters are recursively split. These strategies form a hier-
archical structure, aiding in identifying rare cell types. 
Unlike some methods, hierarchical clustering does not 
require any pre-determined number of clusters, or make 
assumptions about data distributions. Thus, many single-
cell RNA-seq clustering methods include hierarchical 
clustering [4]. CIDR, BackSPIN, and SINCERA are the 
clustering tools which are based on hierarchical cluster-
ing [91, 96, 103].

DBSCAN is a popular density-based clustering algo-
rithm capable of identifying clusters with arbitrary 
shapes and outliers. Unlike many clustering methods, 
DBSCAN does not require the pre-specification of the 
number of clusters. However, it demands users to set two 
parameters: ǫ (eps) and the minimum number of points 
(minPts) to define dense regions that influence DBSCAN 
clustering [132]. GiniClust and Monocle2 are two tools 
which are based on DBSCAN clustering [130].

Graph-based clustering, also known as community-
based clustering, plays a crucial role in disciplines like 
sociology, biology, and systems analysis. It is particularly 
applicable to scenarios represented as interconnected 
nodes and edges. In single-cell RNA-seq data, nodes rep-
resent cells, and connections are determined by pairwise 
cell-cell distances. The approach involves isolating the 
branch with the highest weights (cell-to-cell distances) in 
a dense graph, reflecting cellular relationships. The three 
primary methods for community detection-based clus-
tering are the clique algorithm, spectral clustering, and 
the Louvain algorithm [133]. GRACE and CosTaL are 
well known graph based clustering tools [98, 134].

This deep learning model utilizes a denoising autoen-
coder to reconstruct uncorrupted data from intention-
ally corrupted inputs, enabling robust handling of noisy 

observations. By introducing random Gaussian noise, 
it simulates minor data variations. The encoder and 
decoder functions, implemented with rectifier-activated 
neural networks, process the corrupted input [102]. 
DESC, scziDesk, scVAE, and scDeepCluster are well 
known methods that come under deep learning cluster-
ing [102, 130]. The evaluation of clustering performance 
commonly relies on metrics like adjusted R and index for 
correctness, normalized mutual information (NMI) and 
Jaccard index for similarity, and Silhouette coefficient 
and Dunn index for compactness and separateness of 
clusters [12].

scRNA-seq analysis tools offer diverse capabilities, 
each with strengths and limitations in terms of compu-
tational efficiency, scalability, and sensitivity. SCENIC 
demonstrates high specificity (0.99) and sensitivity (0.88) 
for cell-type identification but demands significant mem-
ory (128 GB) [90]. SIMLR and Monocle provide efficient 
analysis times, with Monocle processing 8365 cells in 9 
min, making them suitable for rapid computations [92]. 
DESC achieves high clustering accuracy (adjusted Rand 
index of 0.919–0.970) and efficiently processes large 
datasets (30,000 cells) using a NVIDIA TITAN Xp GPU 
[100]. However, RaceID and CIDR have limitations, with 
RaceID showing reduced sensitivity to low-expressed 
genes and CIDR’s accuracy decreasing with higher drop-
out rates [96, 97]. MultiK excels in identifying rare cell 
populations, even as small as 0.5%, but is computation-
ally expensive [106]. Secuer outperforms traditional clus-
tering methods, being five to twelve times faster than 
k-means and Louvain/Leiden, making it highly suitable 
for ultra-large datasets [107]. scDeepCluster scales well 
for up to 100,000 cells but requires substantial computa-
tional resources [102].

Ultimately, tool selection depends on dataset size, com-
putational constraints, and the need for rare cell-type 
identification, making comparative evaluation crucial for 
optimizing scRNA-seq analysis.

3.10  Differential expression (DE) analysis
DE analysis is crucial for identifying genes that have sig-
nificant differences in expression levels between distinct 
subpopulations, groups of cells, or under specific disease 
conditions in single-cell RNA-sequencing experiments 
[135, 136]. Differentially expressed genes (DEGs) play 
a vital role in understanding the biological differences 
between compared conditions [120]. Cell states within a 
population lead to unique gene expression patterns, and 
data processing methods have considerable impact on 
the analysis of differential expression, enabling the evalu-
ation of their performance using the results of the analy-
sis [12].
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DESeq2 and EdgeR, initially developed for bulk RNA-
seq experiments, are also widely utilized in single-cell 
RNA-seq studies [71, 109]. DESeq2 employs a general-
ized linear model (GLM) for each gene, incorporating 
shrinkage estimation for stabilizing variances and fold 
changes. It applies statistical tests like the Wald test or 
likelihood ratio (LR) test to assess significance [71, 137]. 
In contrast, EdgeR fits a GLM with negative binomial 
(NB) noise for each gene, estimates dispersions using 
conditional maximum likelihood, and employs a tailored 
exact test suitable for over dispersed data to identify 
DEGs [109, 137].

Various methods have emerged to address challenges 
posed by dropouts and the presence of multiple expres-
sion modes in single-cell RNA-sequencing data analy-
sis (Table  4). For example, MAST utilizes a GLM and 
accounts for dropouts by fitting them to a bimodal dis-
tribution, while Monocle incorporates a Tobit model 
to address dropout events and employs a generalized 
additive model (GAM) for effective data fitting [108]. 
SCDE models gene expression as a combination of Zero-
Inflated Negative Binomial (ZINB) distributions and uses 
Bayesian techniques to estimate posterior probabilities 
for differentially expressed (DE) genes [48]. D3E intro-
duces a novel perspective by modeling the distribution of 
gene expression through the bursting model of transcrip-
tional regulation. scDD employs a multi-modal Bayesian 
modeling framework to capture the diverse distributions 
found in single cells, providing a versatile solution in this 
complex field of study [45]. Recently, Soneson and Rob-
inson conducted a comprehensive assessment of [36] DE 
methods, including those designed for both single-cell 
RNA-seq and bulk RNA-seq data. Their evaluation high-
lighted substantial differences among these approaches, 
particularly in terms of the characteristics and quantity of 
identified DEGs [138]. As the field continues to advance, 
an increasing number of tools dedicated to the analysis 
of differential expression in single-cell RNA-sequencing 
data will be developed. In order to accurately identify 
DEGs, it is important to select tools specifically designed 
for scRNA-seq.

Monocle demonstrates the greatest sensitivity (0.765) 
but also generates a high number of false positives, mak-
ing it less reliable for certain datasets [104]. MAST, on 
the other hand, offers high precision but lower sensitiv-
ity (0.198) and struggles with highly multi-modal data 
[108]. EdgeR and DESeq2, originally designed for bulk 
RNA-seq, achieve intermediate sensitivity (0.58 and 
0.695, respectively), but they may not optimally handle 
zero counts or multi-modality in scRNA-seq [71, 109]. 
However, DESeq2 performs better than EdgeR, with a 
higher true positive rate (TPR). D3E shows high sensitiv-
ity (0.722) but also introduces false positives [113]. Scotty 

focuses on optimizing experimental design but may 
introduce bias against genes with low read counts [110]. 
GREIN lacks functionalities for downstream analyses, 
while Myrna lacks available data [111, 112]. Overall, the 
choice of tool depends on the balance between precision, 
sensitivity, and computational trade-offs in the analysis of 
scRNA-seq data.

3.11  Further analysis step
Following differential expression analysis and cluster-
ing, several downstream analyses can provide deeper 
insights into cellular mechanisms. Trajectory inference is 
employed to map cell differentiation processes, elucidat-
ing the progression of cellular states. Cell-cell commu-
nication analysis, based on ligand-receptor interactions, 
helps in understanding intercellular signaling networks. 
Gene regulatory network construction enables the iden-
tification of key transcriptional regulators governing 
gene expression. Additionally, pathway and functional 
enrichment analysis facilitates the identification of criti-
cal biological pathways associated with cellular functions 
and disease mechanisms. Furthermore, metabolic and 
functional state analysis provides a comprehensive view 
of cellular metabolism and functional alterations, offering 
insights into disease progression and potential therapeu-
tic targets.

4  Single cell databases
There are multiple databases which offer invaluable 
resources for researchers delving into various facets of 
single-cell transcriptomics (Table  5). scRNASeqDB is a 
repository housing 38 human single-cell transcriptome 
datasets, which provides researchers access to gene 
expression profiles across 200 distinct cell types, totaling 
13,440 samples [6]. TMExplorer, on the other hand, spe-
cializes in TME scRNA-seq datasets, providing access to 
48 datasets representing 28 different cancer forms [139]. 
scREAD is a pivotal resource for Alzheimer’s disease 
research, offering access to 73 datasets across 10 brain 
regions, providing researchers with information on cell-
type predictions and DGEs analyses [140]. SC2 disease 
is a curated database for exploring cellular heterogene-
ity across diverse cell types in various diseases, contain-
ing 9,46,481 entries categorized into 341 specific cell 
types, 29 distinct tissues, and 25 different diseases [141]. 
PlantscRNAdb uniquely focuses on plant species, featur-
ing 26,326 marker genes spanning 128 distinct cell types 
[142]. EndoDB specializes in endothelial cells, providing 
curated data from 360 datasets, comprising 4741 bulk 
and 5847 single-cell endothelial transcriptome [143]. 
Lastly, SCAD-Brain integrates data from 17 projects 
related to Alzheimer’s disease, encompassing 21 datasets 
with 359 samples, enabling analyses such as cell marker 
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analysis, gene expression analysis, and pathway enrich-
ment [143]. These databases collectively provide crucial 
information on cellular heterogeneity, gene expression 
profiles, and disease-specific transcriptomic patterns.

5  Current research and gaps
With the help of scRNA-seq, data analysis at single-cell 
resolution is possible to some extent and is expected to 
advance in the future, proving to be a vital technique for 
data analysis. These techniques rely on identifying cellu-
lar differences, understanding their communication, and 
recognizing unique or rare cellular states. We will discuss 
these approaches to scRNA-seq, how they can be imple-
mented in various research domains, and provide some 
examples of their applications.

5.1  Cellular heterogeneity
ScRNA-seq is a technique used to explore single-cell 
expression among a population of cells, characterizing 
cellular heterogeneity. It identifies unique gene expres-
sion profiles, highlighting specific cells that can serve as 
biomarker for disease diagnosis [150]. Additionally, it 
can reveal significant transcriptomic changes in disease 

individuals compared to a healthy ones, suggesting their 
role in disease progression [151]. For example, different 
transcriptional profiles in tumors identify immune-evad-
ing clones, drug-resistant subpopulations, and cancer 
stem-like cells, all of which aid in the advancement of the 
disease and resistance to treatment. Functional heteroge-
neity among T cells, B cells, and myeloid cells has been 
revealed by scRNA-seq in the immune system, outlining 
how distinct immune cells react to infections, inflamma-
tory cues, and antigenic challenges. Therefore, scRNA-
seq thoroughly examines important gene expression 
patterns and uncovers significant biomarkers, receptors, 
ligands, and transcription factors, which lay the founda-
tion for the functional analysis of cells [75].

5.2  Cell‑cell communication
The utilization of single-cell RNA-sequencing data for 
the purpose of examining cell-to-cell communication 
is a powerful methodology for elucidating inter-cellu-
lar communication pathways. Nevertheless, prevailing 
approaches commonly do this analysis by focusing on 
cell categories or clusters, disregarding the intricate 
details at the level of individual single cells. A novel 

Table 5 Databases for scRNA-seq studies and their summary

Database name Host institute Nature of database Link

scRNAseqDB [6] School of Biomedical Informatics 
and School of Public Health, University 
of Texas Health Science Center, USA

Human single cell gene expression 
datasets

https:// bioin fo. uth. edu/ scrna seqdb/

scREAD [140] Bioinformatics and Mathematical Bio-
sciences Lab, The Ohio University, Ohio

Alzheimer’s disease dataset https:// bmbls. bmi. osumc. edu/ scread/

SC2 disease [141] School of Computer Science, North-
western Polytechnical University, China

Comprehensive datasets http:// easyb ioai. com/ sc2di sease/

DRscDB [144] DRSC-Harvard Medical School, USA Comprehensive datasets https:// www. flyrn ai. org/ tools/ single_ 
cell/

PlantscRNAdb [142] Institute of Crop Sciences/Institute 
of Bioinformatics, Zhejiang University, 
China

Plant dataset http:// ibi. zju. edu. cn/ plant scrna db/

EndoDB [143] Carmeliet Lab, VIB - KU Leuven Center 
for Cancer Biology, Belgium

Endothelial cell transcriptomics data https:// vibca ncer. be/ softw are- tools/ 
endodb

SCAD-Brain [145] Hu Lab, School of Medicine, WUST, 
China

Datasets of human and mouse brains 
with Alzheimer’s disease

https:// www. bioin form. cn/ SCAD/

PanglaoDB [146] Integrated Cardio Metabolic Centre 
Karolinska Institutet, Blickagången 6, 
141 57 Huddinge, Sweden

Comprehensive datasets https:// pangl aodb. se/ index. html

Single Cell Expression Atlas EMBL-EBI Comprehensive datasets https:// www. ebi. ac. uk/ gxa/ sc/ home

Single Cell Portal [147] Broad Institute of MIT and Harvard Comprehensive datasets https:// singl ecell. broad insti tute. org/ 
single_ cell

CELLxGENE [148] Chan Zuckerberg Initiative, 1180 Main 
Street, Redwood City, CA 94063, USA

Comprehensive datasets https:// cellx gene. czisc ience. com/

Allen Brain Cell Atlas Allen Institute for Brain Science Mammalian brain https:// portal. brain- map. org/ atlas es- 
and- data/ bkp/ abc- atlas

CellMarker 2.0 [149] College of Bioinformatics Science 
and Technology, Harbin Medical 
University

Comprehensive datasets http:// bio- bigda ta. hrbmu. edu. cn/ CellM 
arker/

https://bioinfo.uth.edu/scrnaseqdb/
https://bmbls.bmi.osumc.edu/scread/
http://easybioai.com/sc2disease/
https://www.flyrnai.org/tools/single_cell/
https://www.flyrnai.org/tools/single_cell/
http://ibi.zju.edu.cn/plantscrnadb/
https://vibcancer.be/software-tools/endodb
https://vibcancer.be/software-tools/endodb
https://www.bioinform.cn/SCAD/
https://panglaodb.se/index.html
https://www.ebi.ac.uk/gxa/sc/home
https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
https://cellxgene.cziscience.com/
https://portal.brain-map.org/atlases-and-data/bkp/abc-atlas
https://portal.brain-map.org/atlases-and-data/bkp/abc-atlas
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
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approach introduced for analyzing interactions at the 
single-cell level was Scriabin [152].

Using this method, scientists can map cellular 
interactions in real time and pinpoint biologically 
important pathways across a range of tissues. Scria-
bin has been utilized in immuno-oncology to analyze 
immune-tumor crosstalk and identify ligand-recep-
tor interactions that promote immune evasion. Pre-
cision immunotherapies have been made possible 
by the discovery of novel checkpoint inhibitors and 
tumor-supporting stromal signals by researchers using 
scRNA-seq data analysis. It employs a combination of 
curated ligand-receptor interaction databases [153, 
154], models of downstream intracellular signaling 
[155], anchor-based dataset integration [49], and gene 
network analysis [156] to examine intricate communi-
cation pathways at the resolution of individual cells. 
This approach allows for the identification of biologi-
cally significant connections between cells at a single-
cell level.

5.3  Cell type identification
ScRNA-seq provides a valuable avenue for the com-
plete sequencing and annotation of cell types within 
various tissues of a given species [156–158]. This 
technique facilitates the identification of both known 
and novel cell types, hence enabling an understanding 
of their associated biological processes and molecu-
lar activities. For example, in a sample size of around 
25,000 bipolar cells in mice, researchers found two 
distinct types of unique mouse retinal bipolar cells. 
Notably, one of these cell types had a shape that devi-
ated from the conventional structure often observed 
in bipolar cells [159]. Furthermore, significant cellu-
lar heterogeneity within the retinal bipolar cell popu-
lation was revealed by scRNA-seq. As a result, using 
computational clustering and differential gene expres-
sion analyses, researchers were able to identify hidden 
molecular signatures associated with these morpho-
logically distinct bipolar cells. This method identified a 
type of atypical bipolar cells that might have important 
effects on visual processing by playing particular roles 
in retinal signaling pathways. One excellent example of 
how scRNA-seq can be used to enhance cellular clas-
sifications and find new targets for additional research 
into retinal development and related visual disorders is 
this kind of characterization. Moreover, computational 
approaches for cell type detection do not need manual 
annotation. Alternatively, these tools may be utilized 
to make direct predictions of cell types based on pub-
licly available resources of scRNA-seq data [160].

6  Applications
As we discussed about current research in scRNA-seq, 
it offers plenty of implementation in various domains. It 
includes drug discovery, microbial profiling, tumor study, 
stem cell research, and so on. Here, we will describe the 
importance and how it can be implemented. The follow-
ing are the applications.

6.1  Drug discovery and development
Since the introduction of whole-transcriptome profiling 
of a single cell in 2009 [4], this technology has evolved 
enormously by giving results at the single-cell level. One 
such example is drug discovery and development, in 
which scRNA-seq investigations were carried out by Van 
de Sande et al. [161] on brain tissues obtained from both 
healthy mice and mouse models of Alzheimer’s disease, 
which revealed the presence of disease-associated micro-
glia. There are differential expression patterns seen in 
such microglia clusters that point to novel molecular tar-
gets that might be taken advantage of to control negative 
neuroinflammation reactions. The study revealed evi-
dence that particular microglial subsets are preferentially 
activated under disease conditions, implying that focused 
treatments could specifically target these pathogenic 
populations. This high resolution data made possible by 
scRNA-seq which highlights the need of spotting rare cell 
types possibly crucial for the course of neuro-degenera-
tion. These findings indicate that a therapeutic approach 
targeting specific cell states may hold potential benefits 
for those afflicted with Alzheimer’s disease. In the end, 
scRNA-seq enables the early identification and charac-
terization of therapeutic targets linked to diseases. Early 
detection of potential issues can ultimately decrease the 
occurrence of clinical failures, hence, enhancing the effi-
ciency of the drug development process.

6.2  Tumor microenvironment (TME)
ScRNA-seq is a very powerful technology that enables 
the study of heterogeneous single-cell populations in a 
TME [162, 163]. Moreover, it gives clarity to marked dif-
ferences among cells in a cell population. It allows for the 
comprehensive examination of gene expression patterns 
in individual cells, which may not be readily apparent in 
bulk analysis. Furthermore, throughout a study, it ena-
bles researchers to identify and analyze the diverse cel-
lular composition within a TME. In the study of glioma, 
Li et al. identified 14 glioma cellular sub-populations and 
7 primary cell types [164], demonstrating the intricate 
and varied nature of the TME. Since the different cell 
types exhibit different gene expression patterns, meta-
bolic adaptations, and immune evasion strategies, this 
heterogeneity is absolutely important in determining 
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tumor evolution and response to treatment. The study 
also highlighted how interactions between glioma cells 
and immune components such as regulatory T cells and 
tumor-associated macrophages (TAMs) create an immu-
nosuppressive environment that promotes tumor growth. 
Glioma cells also show metabolic plasticity, meaning 
they can change between glycolysis and oxidative phos-
phorylation depending on microenvironmental signals, 
enabling their adaptation to changes in therapeutic pres-
sure and nutrient availability. Another important discov-
ery was the identification of specific molecular markers 
and signaling pathways linked to several glioma subtypes, 
thus providing possible targets for precision treatments. 
Another study conducted by Ding et  al. from Harvard 
Medical School utilized single-cell profiling techniques to 
investigate the presence of sub-clonal heterogeneity and 
identify aggressive disease states in triple-negative breast 
cancer (TNBC) [165]. Initially, on untreated TNBC 
tumors, the investigators confirmed the presence of cel-
lular heterogeneity within primary TNBCs with the help 
of scRNA-seq. Furthermore, employing clustering meth-
ods, they have successfully identified five discrete clusters 
of cells. As this method provides more diverse cells, it 
is suitable for evaluating cellular heterogeneity in TME. 
Thus, scRNA-seq could be an appropriate platform for 
research on TME [166].

6.3  Biomarker discovery
Biomarker discovery is a crucial step for disease diagno-
sis, and it can be effectively carried out using scRNA-seq 
analysis. This technology allows for the identification 
gene biomarkers, their regulatory factors, and their sign-
aling pathways involved in disease mechanisms [167]. In 
a study of clear cell renal cell carcinoma (ccRCC) [168], 
Narayanan et al. identified SLC6 A3 as a potent diagnos-
tic and prognostic biomarker using scRNA-seq, paving 
a way for improved diagnosis and treatment strategies. 
Its specificity for malignant tissues is demonstrated by 
the fact that SLC6 A3 expression is markedly increased 
in ccRCC tumor cells but absent in immune cells and 
benign kidney tubules. This finding was confirmed by a 
number of datasets, such as scRNA-seq profiles, micro-
array datasets (GSE40435, GSE53757), and TCGA pan-
cancer expression data, thereby confirming its potential 
as a diagnostic marker. SLC6 A3 is a promising candidate 
for early disease detection because of its high sensitivity 
and specificity in differentiating ccRCC from normal kid-
ney tissue, as further demonstrated by receiver operating 
characteristics (ROC) analysis. Therefore, it is important 
to utilize this technique in biomarker discovery, as it 
plays a vital role in uncovering the molecular mechanism 
of diseases and determines strategies for tackling them 
[169].

6.4  Microbes profiling
Different subpopulations of bacteria within a community 
can exhibit diverse gene expression patterns and dynami-
cally adjust to challenging conditions. This expression 
heterogeneity, which is prevalent in natural micro-biota, 
is difficult to capture using bulk sequencing approaches. 
However, microbes present challenges, such as cell size 
and cell wall variation, as well as low of mRNA con-
tent per cell, and the absence of poly(A) tails in mRNA. 
To address these issues, Pu et  al. developed a novel 
method called Ribosomal RNA-derived cDNA Depletion 
(RiboD), integrated into the PETRI-Seq technique, to 
capture single-cell transcriptomes of Gram-positive and 
Gram-negative bacteria with high purity and low bias 
[170, 171]. This method, known as RiboD-PETRI, offers 
a high-throughput, cost-effective solution for bacterial 
scRNA-seq. It allows precise exploration of bacterial 
population heterogeneity in biofilms and microbiomes 
revealing subpopulations with distinct gene expres-
sion profiles that influence the dynamics and behavior 
of biofilms communities. Using RiboD-PETRI, scientists 
can now see microbial communities more clearly and 
thoroughly, especially in settings like microbiomes and 
biofilms where cellular heterogeneity is essential for 
adaptation and survival. By identifying transcriptional 
alterations that reflect metabolic changes, the emergence 
of antibiotic resistance, and the regulation of quorum 
sensing, the method makes it easier to identify function-
ally distinct bacterial subpopulations within biofilms. A 
deeper understanding of how subpopulations contribute 
to community structure and function is made possible by 
scRNA-seq with RiboD-PETRI, which reveals rare phe-
notypic variants in contrast to bulk sequencing, which 
averages gene expression across a population. These find-
ings highlight the importance of understanding microbial 
heterogeneity in developing therapeutics [170].

6.5  Stem cell research
The use of single-cell sequencing technology offers 
distinct advantages in comprehending the occurrence 
and progression of stem cells. In the course of stem 
cell growth, there exists temporal variation in gene 
expression, posing challenges that have been arduous 
to address using conventional methodologies. The uti-
lization of single-cell sequencing enables researchers to 
direct their attention toward a solitary cell, whether it is 
seen as an independent entity within a larger cell popu-
lation or as a representative of a certain subpopulation 
across several developmental phases. The integration of 
single-cell sequencing with other sophisticated meth-
odologies holds great potential for further enhanc-
ing scientific inquiry. For instance, the combination 
of scRNA-seq with patch-clamp technology presents 
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an intriguing avenue for investigating the underlying 
mechanisms of neuropsychiatric disorders, therefore 
unraveling its fundamental essence [172].

Human primordial germ cells (hPGCs) serve as the 
progenitors for fully developed germ cells. The tran-
scriptomes of hPGCs at the single-cell level exhibit a 
notable degree of homogeneity during both the migra-
tion and gonad phases [173]. Li et al. endeavored to elu-
cidate the trajectory of development and variability of 
fetal female germ cells [174]. A comprehensive analysis 
was conducted on over 2000 germ cells and their cor-
responding gonadal niche cells using scRNA-seq across 
many developmental stages. The primary findings of 
this investigation encompass the identification of dis-
tinct transcriptome attributes shown by transcription 
factor networks across several stages of development. It 
allows researchers to identify gene regulatory networks 
and stage specific transcription factors that govern the 
transition from pleuripotency to lineage commitment. 
The study shed light on the sequential activation of 
important pathways involved in germ cell maturation by 
identifying different transcriptomic signatures in early 
migrating hPGCs compared to those that had reached 
the gonadal ridge. Additionally, the use of scRNA-seq 
has revealed previously unexplored subpopulations 
in the germline during development, emphasizing the 
existence of transcriptionally unique cells that might 
have specialized functions in gametogenesis.

7  Conclusion
In conclusion, the evolution of scRNA-seq has revolu-
tionized our understanding of cellular complexities and 
heterogeneity, paving the way for advanced research 
across various biological landscapes. With the estab-
lishment of novel methodologies, tools, and databases, 
researchers can now delve deeper into the mecha-
nisms governing gene expression at an individual cell 
level, addressing pivotal challenges in drug discovery, 
TMEs, and cellular communication. As we continue 
to explore the vast potential of scRNA-seq, it becomes 
increasingly essential to adopt tailored computational 
tools that enhance data accuracy, mitigate biases, and 
refine analysis techniques. By harnessing the latest 
advancements and remaining cognizant of existing 
gaps, the scientific community can leverage scRNA-seq 
to uncover critical biological insights, ultimately driv-
ing forward our understanding of health and disease in 
unprecedented ways.
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